• Title/Summary/Keyword: ECO2 시뮬레이션

Search Result 36, Processing Time 0.027 seconds

The Economic Comparision through LCC Analysis on each Graded Alternatives for Green Remodeling of Public Building (공공건축물의 그린리모델링 수준별 LCC (Life Cycle Cost) 분석을 통한 경제성 비교)

  • Kim, Jaemoon;Lee, Junghyuk;Lee, Duhwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.38-49
    • /
    • 2018
  • Since the ratification of the Paris Agreement (COP21), the government is continuously strengthening policies for the reduction of greenhouse gas of the construction industry in accordance with the growing importance of reducing greenhouse gas and obligation of the government. Especially, the government emphasizes the need to improve the energy performance of old public buildings. Since 2014, the government is running a pilot project in which the government supports the construction cost of the green remodeling project of old public buildings and it is intended to develop the best practice of green remodeling and activate the green remodeling in the private sector. In this study, we analyzed the economical efficiency of the old public buildings by each level through green remodeling and conducted building related investigation and equipment measurement to plan the alternatives of the corresponding buildings. The improvement plan is a green remodeling plan that integrates alternatives. Five improvement plans were developed for each level to analyze the economic feasibility of each plan. As for the analysis method, the first energy demand amount calculation and the LCC analysis were performed through ECO2. In the LCC aspect, the improved 3/4 plan (middle level plan) was the most excellent and results were obtained in the order of the highest cost plan followed by the lowest cost plan. As a result, it is expected that it can be utilized as a basic data for future green remodeling performance plan and economic feasibility analysis in the future.

CFD analysis of the effect of hydrogen jet flame in road tunnel (도로 터널 내 수소 제트 화염에 대한 CFD 해석 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Hwiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.629-636
    • /
    • 2022
  • Domestic eco-friendly vehicles currently account for 5.8% of the total registered vehicles in Korea. Hydrogen vehicles, one of the representative eco-friendly vehicles, have grown rapidly as they have been expanded to the market based on the government's policy to boost the hydrogen industry. Therefore, it is time to expand the safety review of hydrogen vehicles in various directions according to the increase in supply. In this study, the effect of internal heat damage was analyzed when a jet flame was generated by a hydrogen car in a road tunnel. It was simulated using Fluent, and the amount of jet flame injection was selected in consideration of the hydrogen tank capacity of commercial hydrogen vehicles for road tunnels. In addition, the study was conducted with the direction of the jet flame and the nozzle distance from the tunnel wall as variables. From the results, when the jet flame erupted in the road tunnel, high radiant heat emission of more than 20 kW/m2 was generated in most areas within ±5 m in the longitudinal direction based on the vehicle (spray nozzle) and 5 to 7 m in the lateral direction based on the adjacent tunnel wall.

The Development of the Simple SHGC Calculation Method in Case of a Exterior Venetian Blind Using the Simulation (시뮬레이션을 이용한 외부 베네시안 블라인드의 약식 SHGC 계산법 개발)

  • Eom, Jae-Yong;Lee, Chung-Kook;Jang, Weol-Sang;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.73-83
    • /
    • 2015
  • When it comes to these buildings for business use, cooling load during summertime was reported to have great importance which, as a result, impressively increased interest in Solar Heat Gain Coefficient (SHGC). Such SHGC is considered to be lowered with the help of colors and functions of glass itself, internal shading devices, insulation films and others but basically, these external shading devices for initial blocking that would not allow solar heat to come in from outside the buildings are determined to be most effective. Of many different external shading devices, this thesis conducted an analysis on Exterior Venetian Blind. As for vertical shading devices, previous researches already calculated SHGC conveniently using concepts of sky-opening ratios. However in terms of the Venetian Blind, such correlation is not possibly applied. In light of that, in order to extract a valid correlation, this study first introduced a concept called shape factor, which would use the breadth and a space of a shade, before carrying out the analysis. As a consequence, the concept helped this study to find a very similar correlation. Results of the analysis are summarized as follows. (1) Regarding SHGC depending on the surface reflectance of a shade, an average of 2% error is observed and yet, the figure can always be ignored when it comes to a simple calculation. (2) As for SHGC of each bearing, this study noticed deviations of 4% or less and in the end, it is confirmed that extraction can be achieved with no more than one correlation formula. (3) When only the shape factor and nothing else is used for finding a correlation formula, the formula with a deviation of approximately 5% or less is what one would expect. (4) Since the study observed slight differences in bearings depending on ranges of the shape factors, it needed to extract a weighted value of each bearing, and learned that the smaller the shape factor, the wider the range of a weighted value. The study now suggests that a follow-up research to extract a simple calculation formula by dealing with all these various inclined angles of shade, solar radiation conditions of each region (the ratio of diffuse radiation to direct radiation and others) as well as seasonal features should be carried out.

A Study on HILS System for Virtual Distribution System Using LabVIEW (LabVIEW를 이용한 가상 배전계통의 HILS 시스템 구축에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Kim, Tae-Seong
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.385-391
    • /
    • 2020
  • Overcurrent and abnormal voltages in the distribution system can cause not only burden of power plant but also damage to customers. As a result, researches related to the distribution automation have been widely conducted by utilizing a real time digital simulation to improve the reliability of power supply through rapid failure handing, reduction of power failure intervals and failure recovery. However, the distribution automation systems using the real time digital simulator are expensive and limited to verify actual hardwares. Therefore, in this paper, an external hardware devices was developed based on the distribution system analysis results of the digital simulator. And real-time simulation and functional verification are implemented by the real feeder remote terminal units used in distribution automation. The effectiveness of the proposed system is verified through several experiments.

International industrial logistics complex logistics network design (국제산업물류단지 물류네트워크 설계)

  • Shin, Jae Young;Kim, Woong-Sub
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.221-222
    • /
    • 2014
  • Companies are facing challenges to have high competitiveness because of continuous oil price rising and CO2 emissions regulations. Thus, companies are trying hard to construct effective logistics and operation system to achieve high customer service quality and saving cost. Also the ec-friendly idustrial complex is needed. Busan is in process to construct GILC(Global Industry Logistics City) in west Busan province to achieve high competitiveness and support lack of industrial complex. To construct this kind of logistics industrial complex, it needs logistics system through proper policy and freight transportation co-operation. Especially, efficient management through logistics hierarchy construction in industrial complex is very important for low cost and eco-friendly point of view. Therefore, this paper aims to analyze logistics system and suggest operation model to present logistics complex construction base data.

  • PDF

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

Estimation of Appropriate Infiltration Rate and the Effects of the Flowerbed Type Infiltration System (화단형 침투시설의 단위설계침투량 산정 및 효과분석)

  • Han, Young-Hae;Lee, Tae-Goo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.140-147
    • /
    • 2012
  • This study developed a flowerbed type infiltration system that could control the amount of runoff discharge under a certain level estimated its proper design infiltration rate, and analyzed the effects of its implementation. Analyzing the performance of infiltration system is the one of the essential processes that should be under review to predict its effects after implementation when a rainwater infiltration system is included in a district-based plan. To estimate the unit design infiltration rate of this system, the runoff decrease effect was analyzed by varying the unit infiltration rate of the system applied to the parking lot adjacent to the Korea Institute of Construction Technology laboratory building by using a water balance analysis program. After varying the unit design infiltration to $0.1{\sim}3m^3/m^2.day$ to analyze the variation in the rate of runoff, 80% of the runoff was infiltrated at $1.0m^3/m^2.day$, and the unit infiltration design rate at the time was 0.0416(m3/m2.hr). It was also found that the unit design infiltration rate obtained from a field infiltration test of the developed system was about $0.045m^3/hr$. Based on this study, it was possible that infiltration rate is estimated to consider the economic scale and environmental effect. It is significant to apply the spatial plan of rainwater infiltration system as green infrastructure.

Process Development and Economic Evaluation for Catalytic Conversion of Furfural to Tetrahydrofurfuryl Alcohol (푸르푸랄의 화학적 촉매전환을 통한 테트라히드로푸르푸릴 알코올 생산 공정 개발 및 경제성 평가)

  • Byun, Jaewon;Han, Jeehoon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.609-617
    • /
    • 2017
  • Lignocellulosic biomass is a renewable resource for production of biofuels and biochemicals. Furfural (FF) is an important platform chemical catalytically derived from the hemicellulose fraction of biomass. Tetrahydrofurfuryl alcohol (THFA) is a FF derivative and can be used as an eco-friendly solvent with thermal and chemical stability. Despite large numbers of experimental studies for catalytic conversion of FF to THFA, few research have conducted on the economic feasibility for large-scale THFA production from FF. At the stage of assessment of the potential for commercialization of conversion technology, a large-scale process study is required to identify technological bottleneck and to obtain information for solving scale-up problems. In this study, process simulation and technoeconomic evaluation for catalytic conversion of FF to THFA are performed, as the following three steps: integrated process design, heat integration, and economic evaluation. First, a large-scale process including conversion and separation processes is designed based on experimental results. When the FF processing rate is 255 tonnes per day, the FF-to-THFA yields are 63.2~67.9 mol%. After heat integration, the heating requirements are reduced by 14.4~16.4%. Finally, we analyze the cost drivers and calculate minimum selling price of THFA by economic evaluation. The minimum selling price of THFA for the developed process are $2,120~2,340 per tonne, which are close to the current THFA market price.

The Study for EV Charging Infrastructure connected with Microgrid (마이크로그리드와 연계된 전기자동차 충전인프라에 관한 연구)

  • Hun Shim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • In order to increase the use of electric vehicles (EVs) and minimize grid strain, microgrid using renewable energy must take an important role. Microgrid may use fossil fuels such as small diesel power, but in many cases, they can be supplied with energy from renewable energy, which is an eco-friendly energy source. However, renewable energy such as solar and wind power have variable output characteristics. Therefore, in order to meet the charging and discharging energy demands of electric vehicles and at the same time supply load power stably, it is necessary to review the configuration of electric vehicle charging infrastructure that utilizes diesel power or electric vehicle-to-grid (V2G) as a parallel energy source in the microgrid. Against this background, this study modelized a microgrid that can stably supply power to loads using solar power, wind power, diesel power, and V2G. The proposed microgrid uses solar power and wind power generation as the primary supply energy source to respond to power demand, and determines the operation type of the load's electric vehicles and the rotation speed of the load synchronous machine to provide stable power from diesel power for insufficient generations. In order to verify the system performance of the proposed model, we studied the stable operation plan of the microgrid by simulating it with MATLAB /Simulink.

Optimum Packaging Design of Packaging Tray and Cushion Pad of Korean Pears for Exporting using FEA Simulation (FEA 시뮬레이션 기법을 이용한 수출용 한국 배 포장 트레이 및 완충패드 최적 포장설계)

  • Choi, Dong-Soo;Son, Jae-Yong;Kim, Jin-Se;Kim, Yong-Hoon;Park, Chun-Wan;Jung, Hyun-Mo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.843-852
    • /
    • 2020
  • Among the many packaging materials used in cushion packaging, there is a lack of optimum design for packaging trays and cushion pads used in pear packaging for export and domestic distribution. It causes over-packaging due to excessive material input, and can be solved by applying various parameters needed to optimize the design of the packaging tray and cushion pad considering the packaging material and the number of pears in the box. In the case of a cushion pad for pears, the economic efficiency of material and thickness should be considered. Therefore, it is possible to design a packaging tray and cushion pad depending on eco-friendly packaging materials (PLA, PET) used by applying appropriate design parameters. The static characteristics of the materials used for the packaging of pears were analyzed using FEA (finite element analysis) simulation technique to derive the optimal design parameters. In this study, we analyzed the contact stress and deformation of PET, PLA tray (0.1, 0.5 1.0, 1.5 and 2 mm) and PET foam (2.0, 3 .0 and 4.0 mm) with pears to derive appropriate cushion packaging design factors. The contact stress between the pear and PET foam pad placed on PLA, PET trays were simulated by FEA considering the bioyield strength (192.54±28 kPa) of the pears and safety factor (5) of packaging design, which is the criterion of damage to the pears. For the combination of PET tray and PET foam buffer pad, the thickness of the PET foam is at least 3 mm, the thickness of the PET foam is at least 1.0 mm, the thickness of the foam is at least 2 mm, and if the thickness of the PET tray is at least 1.5 mm, the thickness of the foam is at least 1 mm, suitable for the packaging design. In addition, for the combination of PLA tray and PET foam pad, the thickness of the PET foam was not less than 2 mm if the thickness of the PLA tray was 0.5 mm, and 1 mm or more if the thickness of the PLA tray was not less than 1.0 mm, the thickness of the PET foam was suitable for the packaging design.