DOI QR코드

DOI QR Code

Process Development and Economic Evaluation for Catalytic Conversion of Furfural to Tetrahydrofurfuryl Alcohol

푸르푸랄의 화학적 촉매전환을 통한 테트라히드로푸르푸릴 알코올 생산 공정 개발 및 경제성 평가

  • Byun, Jaewon (School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Han, Jeehoon (School of Chemical Engineering, Chonbuk National University)
  • 변재원 (전북대학교 반도체.화학공학부) ;
  • 한지훈 (전북대학교 화학공학부)
  • Received : 2017.05.20
  • Accepted : 2017.07.01
  • Published : 2017.10.01

Abstract

Lignocellulosic biomass is a renewable resource for production of biofuels and biochemicals. Furfural (FF) is an important platform chemical catalytically derived from the hemicellulose fraction of biomass. Tetrahydrofurfuryl alcohol (THFA) is a FF derivative and can be used as an eco-friendly solvent with thermal and chemical stability. Despite large numbers of experimental studies for catalytic conversion of FF to THFA, few research have conducted on the economic feasibility for large-scale THFA production from FF. At the stage of assessment of the potential for commercialization of conversion technology, a large-scale process study is required to identify technological bottleneck and to obtain information for solving scale-up problems. In this study, process simulation and technoeconomic evaluation for catalytic conversion of FF to THFA are performed, as the following three steps: integrated process design, heat integration, and economic evaluation. First, a large-scale process including conversion and separation processes is designed based on experimental results. When the FF processing rate is 255 tonnes per day, the FF-to-THFA yields are 63.2~67.9 mol%. After heat integration, the heating requirements are reduced by 14.4~16.4%. Finally, we analyze the cost drivers and calculate minimum selling price of THFA by economic evaluation. The minimum selling price of THFA for the developed process are $2,120~2,340 per tonne, which are close to the current THFA market price.

목질계 바이오매스는 바이오 연료 및 바이오 화학제품 생산을 위한 재생 가능 자원이다. 푸르푸랄(furfural, FF)은 목질계 바이오매스의 헤미셀룰로스로부터 화학적 촉매전환으로 유도되는 주요한 플랫폼 케미칼이다. 테트라히드로푸르푸릴 알코올(Tetrahydrofurfuryl alcohol, THFA)은 FF의 유도체로 열적 화학적 안정성을 지닌 친환경 용매로 이용 가능하다. FF를 THFA로 전환하는 실험적 연구가 다수 존재함에도 불구하고, FF로부터 THFA의 대량생산에 관한 경제적 실현가능성에 관한 연구는 거의 수행되지 않았다. 개발된 전환기술의 상용화 단계에서 기술적 병목점 확인과 스케일업 문제의 해결을 위한 정보를 얻기 위해 실증플랜트 규모의 연구가 필요하다. 본 연구에서는 FF의 THFA로의 화학적 촉매전환에 대해 공정 시뮬레이션 및 기술경제성 평가가 수행되며, 3가지 단계(통합 공정 디자인, 열 통합, 경제성 평가)를 거친다. 실험연구 결과를 기반으로 전환공정과 분리공정을 포함하는 실증플랜트 규모의 통합공정이 설계된다. FF 처리량은 일일 255톤이며, FF로부터 THFA로의 수율은 63.2~67.9 mol%이다. 통합공정에 대해 열 통합을 수행하여 가열요구량을 최초 대비 14.4~16.4% 감소시킬 수 있었다. 최종적으로 경제성 평가를 통해 전체 공정의 주요 비용원을 분석하고 THFA의 최소판매가격을 결정하였다. 개발된 공정에서 생산되는 THFA의 최소판매가격은 1톤당 2,120~2,340 달러로, 현재 THFA의 시장 가격에 근접한다.

Keywords

References

  1. Chheda, J. N., Huber, G. W. and Dumesic, J. A., "Liquid-phase Catalytic Processing of Biomass-derived Oxygenated Hydrocarbons to Fuels and Chemicals," ANGEW CHEM INT EDIT, 46(38), 7164-7183(2007). https://doi.org/10.1002/anie.200604274
  2. Jeong, G.-T., "Production of Chemical Intermediate Furfural from Renewable Biomass Miscanthus Straw," Korean Chem. Eng. Res., 52(4), 492-496(2014). https://doi.org/10.9713/kcer.2014.52.4.492
  3. Lee, S.-G. and Park, S. H., "Industrial Biotechnology: Bioconversion of Biomass to Fuel, Chemical Feedstock and Polymers," Korean Chem. Eng. Res., 44(1), 23-34(2006).
  4. Ahn, S. J., Cayetano, R. D., Kim, T. H. and Kim, J. S., "Lactic Acid Production from Hydrolysate of Pretreated Cellulosic Biomass by Lactobacillus Rhamnosus," Korean Chem. Eng. Res., 53(1), 1-5(2015). https://doi.org/10.9713/kcer.2015.53.1.1
  5. Cayetano, R. D., Kim, T. H. and Um, B.-H., "Bioconversion Strategy in Conversion of Lignocellulosic Biomass upon Various Pretreatment Methods using Sulfuric Acid and Aqueous Ammonia," Korean Chem. Eng. Res., 52(1), 45-51(2014). https://doi.org/10.9713/kcer.2014.52.1.45
  6. Kim, J. B. and Kim, J. S., "Enhancement of Enzymatic Hydrolysis of Lignocellulosic Biomass by Organosolv Pretreatment with Dilute Acid Solution," Korean Chem. Eng. Res., 54(6), 806-811(2016). https://doi.org/10.9713/kcer.2016.54.6.806
  7. Martin, M. A., "First Generation Biofuels Compete," New Biotechnol, 27(5), 596-608(2010). https://doi.org/10.1016/j.nbt.2010.06.010
  8. Naik, S. N., Goud, V. V., Rout, P. K. and Dalai, A. K., "Production of First and Second Generation Biofuels: a Comprehensive Review," Renew Sust. Energ. Rev., 14(2), 578-597(2010). https://doi.org/10.1016/j.rser.2009.10.003
  9. Council, N. R., Renewable fuel standard: potential economic and environmental effects of US biofuel policy, National Academies Press (2012).
  10. Sen, S. M., Alonso, D. M., Wettstein, S. G., Gurbuz, E. I., Henao, C. A., Dumesic, J. A. and Maravelias, C. T., "A Sulfuric Acid Management Strategy for the Production of Liquid Hydrocarbon Fuels Via Catalytic Conversion of Biomass-derived Levulinic Acid," Energ. Environ. Sci., 5(12), 9690-9697(2012). https://doi.org/10.1039/c2ee22526c
  11. Sen, S. M., Henao, C. A., Braden, D. J., Dumesic, J. A. and Maravelias, C. T., "Catalytic Conversion of Lignocellulosic Biomass to Fuels: Process Development and Technoeconomic Evaluation," Chem. Eng. Sci., 67(1), 57-67(2012). https://doi.org/10.1016/j.ces.2011.07.022
  12. Han, J., Sen, S. M., Alonso, D. M., Dumesic, J. A. and Maravelias, C. T., "A Strategy for the Simultaneous Catalytic Conversion of Hemicellulose and Cellulose From Lignocellulosic Biomass to Liquid Transportation Fuels," Green Chem., 16(2), 653-661(2014). https://doi.org/10.1039/C3GC41511B
  13. Han, J., Luterbacher, J. S., Alonso, D. M., Dumesic, J. A. and Maravelias, C. T., "A Lignocellulosic Ethanol Strategy via Nonenzymatic Sugar Production: Process Synthesis and Analysis," Bioresource Technol., 182, 258-266(2015). https://doi.org/10.1016/j.biortech.2015.01.135
  14. Han, J., Sen, S. M., Luterbacher, J. S., Alonso, D. M., Dumesic, J. A. and Maravelias, C. T., "Process Systems Engineering Studies for the Synthesis of Catalytic Biomass-to-fuels Strategies," Comput. Chem. Eng., 81, 57-69(2015). https://doi.org/10.1016/j.compchemeng.2015.04.007
  15. Kim, S. and Han, J., "A Catalytic Biofuel Production Strategy Involving Separate Conversion of Hemicellulose and Cellulose Using 2-sec-butylphenol (SBP) and Lignin-derived (LD) Alkylphenol Solvents," Bioresource Technol., 204, 1-8(2016). https://doi.org/10.1016/j.biortech.2015.12.075
  16. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A. and Lukas, J., Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover, National Renewable Energy Laboratory (NREL), Golden, Colorado (2002).
  17. Kazi, F. K., Fortman, J., Anex, R., Kothandaraman, G., Hsu, D., Aden, A. and Dutta, A., Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol, National Renewable Energy Laboratory (NREL), Golden, Colorado (2010).
  18. Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B. and Worley, M., Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, National Renewable Energy Laboratory (NREL), Golden, Colorado (2011).
  19. Byun, J. and Han, J., "Process Synthesis and Analysis for Catalytic Conversion of Lignocellulosic Biomass to Fuels: Separate Conversion of Cellulose and Hemicellulose Using 2-sec-butylphenol (SBP) Solvent," APPL ENERG, 171, 483-490(2016). https://doi.org/10.1016/j.apenergy.2016.03.088
  20. Han, J., "Process Systems Engineering Studies for Catalytic Production of Bio-based Platform Molecules from Lignocellulosic Biomass," Energ Convers Manage, 138, 511-517(2017). https://doi.org/10.1016/j.enconman.2017.02.027
  21. Kim, S. and Han, J., "Enhancement of Energy Efficiency and Economics of Process Designs for Catalytic co-production of Bioenergy and Bio-based Products from Lignocellulosic Biomass," INT J ENERG RES, (2017).
  22. Lange, J. P., van der Heide, E., van Buijtenen, J. and Price, R., "Furfural - a Promising Platform for Lignocellulosic Biofuels," Chemsuschem, 5(1), 150-166(2012). https://doi.org/10.1002/cssc.201100648
  23. Tike, M. A. and Mahajani, V. V., "Kinetics of Liquid-phase Hydrogenation of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol over a Ru/$TiO_2$ Catalyst," Ind. Eng. Chem. Res., 46(10), 3275-3282 (2007). https://doi.org/10.1021/ie061137m
  24. http://www.frontresearch.com/news/global-tetrahydrofurfurylalcohol-market-witnesses-strong-competition/.
  25. Nagaraja, B., Padmasri, A., Raju, B. D. and Rao, K. R., "Vapor Phase Selective Hydrogenation of Furfural to Furfuryl Alcohol over Cu-MgO Coprecipitated Catalysts," J. Mol. Catal A: Chem, 265(1), 90-97(2007). https://doi.org/10.1016/j.molcata.2006.09.037
  26. Zhang, B., Zhu, Y., Ding, G., Zheng, H. and Li, Y., "Selective Conversion of Furfuryl Alcohol to 1,2-pentanediol over a Ru/$MnO_x$ Catalyst in Aqueous Phase," Green. Chem., 14(12), 3402-3409(2012). https://doi.org/10.1039/c2gc36270h
  27. Han, J., "Integrated Process for Simultaneous Production of Jet Fuel Range Alkenes and N-methylformanilide Using Biomassderived Gamma-valerolactone," J. Ind. Eng. Chem., 48, 173-179 (2017). https://doi.org/10.1016/j.jiec.2016.12.036