• Title/Summary/Keyword: ECG measurement system

Search Result 129, Processing Time 0.026 seconds

Mobile ECG Measurement System Design with Fetal ECG Extraction Capability (태아 ECG 추출 기능을 가지는 모바일 심전도 측정 시스템 설계)

  • Choi, Chul-Hyung;Kim, Young-Pil;Kim, Si-Kyung;You, Jeong-Bong;Seo, Bong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.431-438
    • /
    • 2017
  • In this paper, the abdomen ECG(AECG) is employed to measure the mother's ECG instead of the conventioanl thoracic ECG measurement. The fetus ECG signal can be extracted from the AECG using an algorithm that utilizes the mobile fetal ECG measurement platform, which is based on the BLE (Bluetooth Low Energy). The algorithm has been implemented by using a replacement processor processed directly from the platform BLE instead of the large statistical data processing required in the ICA(Independent component analysis). The proposed algorithm can be implemented on a mobile BLE wireless ECG system hardware platform to process the maternal ECG. Wireless technology can realize a compact, low-power radio system for short distance communication and the IOT(Intenet of Things) enables the transmission of real-time ECG data. It was also implemented in the form of a compact module in order for mothers to be able to download and store the collected ECG data without having to interrupt or move the logger, and later link the module to a computer for downloading and analyzing the data. A mobile ECG measurement prototype is manufactured and tested to measure the FECG for pregnant women. The experimental results verify a real-time FECG extraction capability for the proposed system. In this paper, we propose an ECG measurement system that shows approximately 91.65% similarity to the MIT database and the conventional algorithm and SNR performance about 10% better.

Development of the wearable ECG measurement system for health monitoring during daily life (일상생활 중 건강모니터링을 위한 착용형 심전도계측 시스템 개발)

  • Noh, Yun-Hong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2010
  • In this study, wearable ECG measurement system was implemented for health monitoring during daily life. A wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenience in wearing. The measured ECG signal is transmitted via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. The ECG monitoring program is developed at end user which is personal computer. The measured ECG contains many noises mainly due to motion artifacts. For ECG signal processing, adaptive filtering process is proposed which can reduce motion artifacts efficiently and accurately than digital filter. The experimental results show that a reliable performance with high quality ECG signal can be achieved using this wearable ECG monitoring system.

Implementation of Wireless ECG Measurement System Attaching in Chair for Ubiquitous Health Care Environment (유비쿼터스 헬스 케어 적용을 위한 의자 부착형 무선 심전도 측정 시스템 구현)

  • Ye, Soo-Young;Baik, Seong-Wan;Kim, Jee-Chul;Jeon, Gye-Rok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.776-781
    • /
    • 2008
  • In this study, ubiquitous health care system attaching in chair to monitor ECG for health care was developed at the unconsciousness state. The system conveniently and simple measured ECG at non-consciousness. We measured the contact impedance to skin-electrode of metal mesh electrodes of the system. Contact impedance enable the electrode to use for ECG measurement. The results are that the impedance of the metal mesh electrodes according to sizes is low when the size is 4$cm^2$. As the result, when the size of the metal mesh electrode is 4$cm^2$, the electrode is fit for ECG measurement. We can acquired by positing the arm on the metal mesh electrode. The ECG signal was detected using a high-input-impedance bio-amplifier, and then passed filter circuitry. The measured signal transmitted to a PC through the bluetooth wireless communication and monitored. Data of the non-constrained ECG system attaching in chair is noise-data when comparing metal mesh electrode with the Ag/Agcl electrode but the data is significant to monitor ECG for check the body state.

Implementation of Extended Kalman Filter for Real-Time Noncontact ECG Signal Acquisition in Android-Based Mobile Monitoring System

  • Rachim, Vega Pradana;Kang, Sung-Chul;Chung, Wan-Young;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Noncontact electrocardiogram (ECG) measurement using capacitive-coupled technique is a very reliable long-term noninvasive health-care remote monitoring system. It can be used continuously without interrupting the daily activities of the user and is one of the most promising developments in health-care technology. However, ECG signal is a very small electric signal. A robust system is needed to separate the clean ECG signal from noise in the measurement environment. Noise may come from many sources around the system, for example, bad contact between the sensor and body, common-mode electrical noise, movement artifacts, and triboelectric effect. Thus, in this paper, the extended Kalman filter (EKF) is applied to denoise a real-time ECG signal in capacitive-coupled sensors. The ECG signal becomes highly stable and noise-free by combining the common analog signal processing and the digital EKF in the processing step. Furthermore, to achieve ubiquitous monitoring, android-based application is developed to process the heart rate in a realtime ECG measurement.

Development of Chair Backrest for Non-intrusive Simultaneous Measurement of ECG and BCG (심전도와 심탄도의 무구속적 동시 측정을 위한 의자 등받이 개발)

  • Lim, Yong-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.104-109
    • /
    • 2018
  • A non-intrusive ECG and BCG measurement system is introduced. The system is built on a auxiliary backrest of a chair. The developed system is aimed to non-intrusive assessment of cardiovascular dynamic indices such as pulse arrival time(PAT) and pre-ejection period (PEP). In the system, capacitive active electrodes and capacitive grounding were used for the non-intrusive indirect-contact ECG measurement, and EMFi pressure sensor was used for the non-intrusive BCG measurement. The capacitive active electrodes and the EMFi sensor were attached on the backrest. Using the system, ECG and BCG were successfully acquired. The measured BCG showed peaks that following ECG R peaks. It was shown that the time interval between Q wave in ECG and first peak in BCG correlates Pre-ejection period measured by impedance-cardiogram. The results showed that the introduced system can be used for the non-intrusive various cardiovascular information including ECG, PAT, PEP.

Design of ECG Measurement System based on the Android (안드로이드기반의 심전도(ECG, Electrocardiogram) 측정 시스템 설계)

  • Kim, Woong-Sik;Kim, Jong-Ki
    • Journal of Internet Computing and Services
    • /
    • v.13 no.1
    • /
    • pp.135-140
    • /
    • 2012
  • As the recent advanced in BIO signal measurement technology, our computing platform is rapidly shifting from desktop PCs to Embedded System. Therefore, In this paper introduces an implementation of the same precision as a hospitan ECG system on the Android. The most important fact of the hospital system is connectivity among the PC such as separate means of communication, we can eliminate the separate means of communication through the Porting Embedded System on Android that can be receive ECG signal directly. We also implementation ECG App on Android that can analyze and show the data result directly.

A Development of Portable Bioelectric Signal Measurement System for Industrial Workers' Safety (근로자 안전을 위한 휴대용 생리모니터 시스템 개발)

  • 장준근;허웅;변미경;한상휘;김형태;김형조;김정국
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.241-245
    • /
    • 2004
  • In this paper, we implement a portable bioelectric signal measurement system for the safety of industrial workers. The developed system consists of two parts: the one is boielectric signal measurement unit and the other is signal analyzer system with PDA. The former includes signal processing part, A/D convertor, and 8051 based microprocessor, the latter includes software for signal analysis and display. The developed system detects industrial worker's ECG and displays and stores it to PDA. The ECG data in PDA can be transmitted to PC located in a distance, allowing a doctor to review the ECG and make a treatment decision. A doctor analyzes the ECG data and gives medical treatment to industrial worker.

  • PDF

A Wireless ECG Measurement System based on the Zigbee USN (Zigbee USN 기반의 무선 ECG 측정 시스템)

  • Chang, Yun-Seok;Kim, Bo-Yeon
    • The KIPS Transactions:PartC
    • /
    • v.18C no.3
    • /
    • pp.195-198
    • /
    • 2011
  • Recent expansion of the ubiquitous environment and improvement of the USN give lots of U-healthcare systems. In this paper, we design and implement a wireless ECG measurement system that can send ECG signals among the sensors and collector. It can also give almost the same precision as a hospital ECG system with mobility. The most important fact of the mobile ECG system is the signal data connectivity among the sensors and device such as signal cables or wires. we can eliminate the signal cable through the Zigbee sender and collector via implementing Zigbee-SD communication system that can receive the ECG signal data. We also implement ECG app software on the smart phone that can analyze and show the data results directly. It can give lots of mobility and usability under ubiquitous environment and would be a very efficient wireless ECG system for U-healthcare service.

ECG & Temperature Measurement Wireless Sensor used Ag/AgCl Thin-Film (Ag/Agcl 박막을 이용한 ECG 및 온도 측정용 무선센서)

  • Lim, Jin-Hee;Nam, Hyo-Duck;Jung, Woo-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.342-343
    • /
    • 2007
  • In this paper, we developed an integrated miniaturized device which acquires and transmits the signal of ECG an interested heartbeat and body's temperature. Electrocardiogram(ECG) is a recording of the electrical activity on the body surface generated by heart. ECG & temperature measurement is collected by wireless sensor (for Ag/AgCl Thin-Film) placed at designated locations on the body. It is that dual wireless sensor will apply variously to Ubiquitous & Healthcare System.

  • PDF

Design and Implementation of Mobile Continuous Blood Pressure Measurement System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 모바일 연속 혈압 측정 시스템의 설계 및 구현)

  • Kim, Seong-Woo;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1469-1476
    • /
    • 2022
  • Recently, many researches have been conducted to estimate blood pressure using ECG(Electrocardiogram) and PPG(Photoplentysmography) signals. In this paper, we designed and implemented a mobile system to monitor blood pressure in real time by using 1-D convolutional neural networks. The proposed model consists of deep 11 layers which can learn to extract various features of ECG and PPG signals. The simulation results show that the more the number of convolutional kernels the learned neural network has, the more detailed characteristics of ECG and PPG signals resulted in better performance with reduced mean square error compared to linear regression model. With receiving measurement signals from wearable ECG and PPG sensor devices attached to the body, the developed system receives measurement data transmitted through Bluetooth communication from the devices, estimates systolic and diastolic blood pressure values using a learned model and displays its graph in real time.