• Title/Summary/Keyword: ECG electrode

검색결과 87건 처리시간 0.023초

플로팅 전극과 플랙시블 전극의 심전도 비교연구 (Comparative Studies on the ECG Using a Floating Electrode and Flexible Electrode)

  • 신승철;이세훈;김경호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.301-302
    • /
    • 2011
  • 본 연구에서는 Floating Electrode와 Flexible Electrode를 사용한 심전도 측정결과의 비교연구를 진행하였다. 일반적으로 심전도 측정시 사용되고 있는 Floating Electrode를 이용하여 심전도 측정을 할 경우 비교적 안정적인 데이터를 얻기 용이하다는 장점이 있지만, 여러 개의 전극을 몸에 붙이는 번거로움과 피실험자의 불쾌감 등 단점도 있다. 반면, 본 연구에서 제안하는 방법은 Flexible Electrode를 침대 혹은 의자와 설치하여 무구속적인 측정 방법을 통하여 사용자의 편이를 향상시키고 불편함을 최소화를 목표로 한다. 신호검출의 가능성은 확인하였으며, 향후 검출된 데이터를 이용하여 일상생활을 하면서 건강상태를 모니터링 할 수 있는 헬스 케어 응용 서비스로의 연구를 진행하고자 한다.

  • PDF

일상생활 중 건강모니터링을 위한 착용형 심전도계측 시스템 개발 (Development of the wearable ECG measurement system for health monitoring during daily life)

  • 노윤홍;정도운
    • 센서학회지
    • /
    • 제19권1호
    • /
    • pp.43-51
    • /
    • 2010
  • In this study, wearable ECG measurement system was implemented for health monitoring during daily life. A wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenience in wearing. The measured ECG signal is transmitted via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. The ECG monitoring program is developed at end user which is personal computer. The measured ECG contains many noises mainly due to motion artifacts. For ECG signal processing, adaptive filtering process is proposed which can reduce motion artifacts efficiently and accurately than digital filter. The experimental results show that a reliable performance with high quality ECG signal can be achieved using this wearable ECG monitoring system.

착용형 심장활동 모니터링 시스템을 활용한 정신적 스트레스 평가 (The Assessment of Dynamic Mental Stress with Wearable Heart Activity Monitoring System)

  • 김경섭;신승원;이정환;최희정
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.1109-1115
    • /
    • 2008
  • In the ubiquitous health monitoring environments, it is quite important not only to evaluate the physiological health condition but also mental stress condition. In order to achieve this goal, a heart activity monitoring system utilizing a wearable bipolar electrode is devised and the heart rate variability(HRV) is extracted and interpreted in both frequency and time feature domains. Consequently, to evaluate the emotional stress condition of the subjects, a stress-induced experimental protocol was applied to healthy subjects and the time and frequency features of heart activity were analyzed in terms of the ratio of low frequency components v.s., high frequency components and the relevant the moving average distributions compromising the successive RR peaks intervals in the ambulatory ECG measurement system.

Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe2+/Fe3+-Mediated Electrochemical Oxidation Solutions

  • Jung, Youn-Su;Pyo, Myoung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권5호
    • /
    • pp.974-978
    • /
    • 2008
  • Removal of heavy metal ions ($Cd^{2+}$ and $Zn^{2+}$) by electrocoagulation (ECG) was investigated in an acidic condition, which is necessary for re-using or discharging the mediated electrochemical oxidation (MEO) media. Effects of various parameters such as electrolytes, current densities, and electrode materials were examined for a metal-contaminated MEO system using $Fe^{2+}/Fe^{3+}$ pairs as a mediator. It was found that ECG with Al electrodes is greatly affected by the presence of $Fe^{2+}$. [$Cd^{2+}$] and [$Zn^{2+}$] remain constant until [$Fe^{2+}$] reaches a certain concentration level (ca. 10 mM). This preferential removal of $Fe^{2+}$ during ECG with Al electrodes is not alleviated by controlling current densities, potential programs, and solution mixing. ECG with Fe electrodes, on the other hand, resulted in relatively fast removal of $Cd^{2+}$ and $Zn^{2+}$ under coexistence of $Fe^{2+}$, indicative of the different role between $Fe^{n+}$ generated from an electrode and $Fe^{2+}$ initially present in a solution. When ECG was performed with Fe electrodes until [$Fe^{n+}$] became the same as the concentration of initially present $Fe^{2+}$, [$Cd^{2+}$] and [$Zn^{2+}$] were reduced to one-tenth of the initial concentrations, suggesting the possibility of a continuous use of the medium for a subsequent MEO process.

MEMS 기술과 유연인쇄회로기판 기술을 이용한 단일지점 검침 심전도 센서 (One point detection electrocardiography sensor using MEMS and flexible printed circuit technology)

  • 김홍래;이충일;이충근;이명호;김현준;최의중;김용준
    • 센서학회지
    • /
    • 제18권5호
    • /
    • pp.359-364
    • /
    • 2009
  • This paper presents flexible electrocardiography(ECG) sensors using micro electro mechanical systems(MEMS) and flexible printed circuit(FPC) technology. By using FPC technology, ECG sensors which consisted of an outer hook-shaped electrode and an inner circular-shaped electrode were fabricated on the polyimide substrate. Thereafter, the bipolar ECG sensor was miniaturized using MEMS technology. The ECG measurement capability was examined by attaching the sensor to the human chest and wrist. Performance of the proposed sensors was then compared with ECG measured by commercial Ag/AgCl electrodes. It was verified that ECG could be measured using proposed sensors at only single body.

심전도와 심음을 측정하기 위한 무선 전자 심전도-심음 청진기 개발 (Development of Wireless Electronic Cardiogram and Stethoscope (ECGS) to Measure ECG Signal and Heart Sound)

  • 조한석;강영환;박재순;최진규;정연호;구치완
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권2호
    • /
    • pp.124-130
    • /
    • 2022
  • In this paper, we proposed a portable electronic cardiogram and stethoscope (ECGS) that can simultaneously perform the electrocardiogram (ECG) and auscultation tests to increase the reliability of diagnosis of heart disease. To measure the ECG and heart sound (HS) at the same time, three ECG electrodes and a microphone sensor were combined into a triangular shape with a width of 90 mm and a height of 97 mm that can be held in one hand. In order to prevent skin problems when they contact the patient's skin, a capacitive coupled electrode was selected as the ECG electrode and a silicone material was used in a chest piece with the microphone sensor. For the signals measured from the electrodes and the chest piece, filters were respectively configured to pass only the signals of 0.01-100 Hz and 20-250 Hz, which are frequency bands for ECG and HS. The filtered ECG and HS analog signals were converted into digital signals and transmitted to a PC using wireless communication for monitoring them. The HS could be auscultated simultaneously using an earphone. The monitored ECG had an SNR of about 34 dB and a P-QRS-T waveform is clearly visible. In addition, the HS had an SNR of about 28 dB and both S1 and S2 are clearly visible. It is expected that it can aid doctors' inexperience in analyzing the ECG and HS.

전도성 섬유 기반 심전도 전극의 성능 평가에 관한 연구 (A Study on Performance Evaluation for Electrocardiography Signal Measurement Electrode based on Conductive Fabric)

  • 강보규;유선국
    • 전자공학회논문지
    • /
    • 제50권2호
    • /
    • pp.210-220
    • /
    • 2013
  • 인구의 고령화 사회에 접어든 최근에는 스마트 의류와 접목된 다양한 형태의 착용형 유헬스 디바이스가 개발되어 일상생활과 가정에서의 생활에 양손을 자유로이 하여 불편함 없이 건강변수 측정이 가능하게 되었다. 하지만 착용형 유헬스 디바이스의 보급과 더불어 이를 응용한 디바이스에 대한 연구 및 개발만이 우선되고 있는 현재, 이에 대한 성능 평가의 중요성에 대한 인식은 미흡한 실정이다. 본 논문에서는 이러한 착용형 유헬스 디바이스와 스마트 의류에 접목하여 전극으로 사용될 수 있는 전도성 섬유를 이용한 전극을 구성하여 심전도(ECG) 신호 측정을 위해 일반적으로 사용되는 패치타입의 Ag-AgCl 전극과 임피던스(Impedance), 심전도(ECG) 신호의 상관관계 비교와 CMRR 측정을 통하여 착용형 유헬스 디바이스에의 사용 가능성을 밝히기 위해 시험을 통한 성능차이를 평가 하였다.

웨어러블 심전도 측정과 임상 심전도 측정과의 상관관계에 대한 연구 (A Study on the Correlationship between Wearable ECG and Clinical ECG Measurements)

  • 이강휘;이성수;김상민;이혁재;민경진;강현규;이주현;곽휘권;고윤수;이정환
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1690-1698
    • /
    • 2018
  • Recent advances in ICT technology have transformed many of our daily lives and attracted a lot of attention to personal health. Heart beat measurement that reflects cardiac activities has been used in various fields such as exercise evaluation and psychological state evaluation for a long time, but its utilization method is limited due to its differentiation from clinical electrocardiogram. Therefore, in this study, we could observe the change of the measured signal according to the change of the distance and the position of the measuring electrodes which are non-standard electrode configuration. Based on the electric dipole model of the heart, correlation with clinical electrocardiogram could be confirmed by synthesizing multiple surface potentials measured with a shorter electrode distance than standard one. From the electromagnetic point of view, the distance between the measuring electrodes corresponds to the distance that the electric potential by the cardiac electric dipole moves, and the electric potential measured at the body surface is proportional to the moving distance of the electric potential. Therefore, it is preferable to make the distance between electrodes as long as possible, and to position the measuring electrode close to the ventricle rather than the atrium. In addition, it was found that standard electrocardiographic waveforms could be synthesized by using arithmetic sum of multiple measuring electrodes due to the relationship of electrical dipole vectors, which is obtained by dividing and positioning a plurality of measuring electrodes on a reference electrode line, such as Lead-I, Lead-II direction. Also, we obtained a significant Pearson correlation coefficient ($r=0.9113{\pm}0.0169$) as a result of synthetic experiments on four subjects.

ECG와 호흡 측정이 가능한 모바일 헬스케어 의류 시스템 (The Mobile Health-Care Garment System for Measurement of Cardiorespiratory Signal)

  • 김정도;김갑진;정기수;이정환;안진호;이상국
    • 정보처리학회논문지A
    • /
    • 제17A권3호
    • /
    • pp.145-152
    • /
    • 2010
  • 대부분의 모바일 웨어러블 헬스케어 모니터링 의류 시스템은 생체신호를 측정할 수 있는 센서와 데이터 취득과 무선 통신 및 제어를 담당하는 회로부, 이들을 내장하는 의복으로 구성된다. 기존의 의복형 헬스케어 시스템은 센서를 의복에 장시간 내장하기가 어렵고, 피부 접촉 시 시간에 따라 저항 값이 변화하기 때문에 장기적인 생체 신호 모니터링이 쉽지 않으며, 센서 전극과 회로 사이에 존재하는 신호선의 물리적 장애 요인도 가지고 있다. 본 연구에서는 이러한 문제점들을 해결하기 위하여, PVDF에 PEDOT 재료를 코팅하여 만든 패브릭 나노웹 ECG 전극과 PVDF 필름을 사용한 호흡 센서를 $10\;{\mu}m$ 두께의 디지털 실을 이용하여 사용자의 의류와 일체화하였다. 탈부착이 가능한 무선 블루투스(Bluetooth) 내장 스테이션과 디지털실로 기존 의류와 일체화한 생체 신호 측정용 의류 제작을 통해, 휴대폰에서 손쉽게 심전도(ECG)와 맥박신호를 표시 할 수 있었다.

Study on Reusable Electrodes for Personal Electrocardiography

  • Kim, Jonghoon;Yoon, Gilwon
    • 센서학회지
    • /
    • 제27권5호
    • /
    • pp.340-344
    • /
    • 2018
  • Electrodes are an important part of electrocardiography (ECG); disposable electrodes have been extensively used. However, personal ECG monitoring devices for Internet of Things applications require reusable electrodes. As there have been no systematic studies on the characteristics of reusable electrodes to date, we conducted this study to assess the performance and feasibility of electrodes with different materials. We built reusable electrodes using twelve different metallic materials, including commonly used copper, silver, zinc, plating materials, chemically inert titanium, stainless steel, and aluminum. Each electrode was fabricated to a size of $5{\times}10mm$. Their characteristics such as offset, baseline drift, stabilization time, and chemical inertness were compared. A personal ECG monitoring system was used to test the manufactured electrodes. The performances of the Ag, Cu, and Zn electrodes were better than the performances of other electrodes. However, these materials may not be used owing to the chemical changes that occur when the electrodes are in contact with the skin, such as discoloration and corrosion, which deteriorate their electrical characteristics. Titanium, stainless steel, and aluminum are chemically stable. The titanium electrode showed the best performance among the three, and it is our recommendation as a material for manufacturing reusable electrodes.