• 제목/요약/키워드: ECG Monitoring

검색결과 259건 처리시간 0.024초

디지털 필터를 이용한 소형 심전도계의 구현 (Implementation of a Mini ECG Using a Digital Filter)

  • 안종현;김기완
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.77-81
    • /
    • 2021
  • In this paper, a low-csst ECG system using a digital filter was implemented. After amplifying the analog ECG signal, it is converted into a digital signal and filtered. The developed ECG module is miniaturized by removing the analog filter element that occupies the existing volume and replacing it with a digital filter using a 3-stage Butterworth filter which is one of IIR filters. It uses a serial monitoring program with C# to check and save the ECG waveform measured on a computer screen. The ECG system using a developed digital filter in this paper uses a low-cost processor instead of an expensive, high-end processor, and its size and price are reduced by converting the analog filter to a digital filter. In addition, since the waveform of the developed ECG system is similar to the actual ECG waveform of MIT-BIU, it is considered that the existing analog filter can be replaced with the developed digital filter.

Optimal Selection of Wavelet Coefficients for Electrocardiograph Compression

  • Del Mar Elena, Maria;Quero, Jose Manuel;Borrego, Inmaculada
    • ETRI Journal
    • /
    • 제29권4호
    • /
    • pp.530-532
    • /
    • 2007
  • This paper presents a simple method to implement a complete on-line portable wireless holter including an electrocardiogram (ECG) monitoring, processing, and communication protocol. The proposed algorithm significantly reduces the hardware resources of threshold estimation for ECG compression, using the standard deviation updated with each new input signal sample. The new method achieves superior performance in terms of hardware complexity, channel occupation and memory requirements, while keeping the ECG quality at a clinically acceptable level.

  • PDF

노인 헬스케어를 위한 ECG분석 및 활동량 모니터링 구현 (A ECG Analysis with Activity Monitrong for Healthcare of Elderly Person)

  • ;;이대석;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.347-350
    • /
    • 2007
  • 본 연구는 무선 센서네트워크를 활용하여 환자 또는 고령자를 위한 ECG, 활동량 모니터링 시스템을 설계 및 구현하였다. 심전도 변화는 사람의 활동, 뛰거나 걷기 등의 움직임에 따라 조금씩 변화한다. 그래서 종종 자세, 행동에 따른 ECG변화의 기록은 중요시되며 이를 위해 매일 활동하는 환자의 활동 모니터링 시스템이 필요하다. ECG와 활동량 데이터는 자동 알림기능을 지원하는 시스템에 저장되고 긴급 상황 발생 시 보다 빠르게 초기 활동을 할 수 있게 한다. 몸에서 계측된 ECG 데이터와 활동량 데이터는 무선 센서네트워크를 통해 베이스테이션과 연결된 서버에 전송되며 서버에서 비정상적 상황을 판별시 발생 의사의 PDA 또는 서버에 데이터를 전송한다.

  • PDF

무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구 (A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN)

  • 이승철;정완영
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

섬유전극을 기반으로 한 라이프스타일 모니터링용 ECG-센싱의류의 프로토타입 연구 (A Study on a Prototype of ECG-Sensing ClothingBased on Textile Electrode for Lifestyle Monitoring)

  • 강다혜;조하경;송하영;조현승;이주현;이강휘;구수민;이영재;이정환
    • 감성과학
    • /
    • 제11권3호
    • /
    • pp.419-426
    • /
    • 2008
  • In order to develop "textile electrode - sensing clothing" which is a sort of smart clothing to measure electric activities of heart, we propose possible ways to develop textile electrode and design of sensing clothing, ultimately aiming to develop "ECG sensing clothing for lifestyle monitoring". Conventional sensors for measuring typical electric activities of heart keep certain distance between measuring electrodes to measure signals for electric activities of heart, but these sensors often cause inappropriate factors (e.g. motional artifacts, inconvenience of use, etc) for monitoring natural cardiac activities in our daily life. In addition, most of textile electrodes have made it difficult to collect data due to high impedance and unstable contact between skin and electrodes. To overcome these questions, we minimized distance between electrodes and skin to maximize convenience of use. And in order to complement contact between skin electrodes, we modified textile electrode's form and developed ways to design clothing. As a result, we could find out clinical significance by investigating possible associations of clinical electrocardiogram (ECG) with variation of distance between electrodes, and could also demonstrate clinically significant associations between textile electrode developed herein and clothing.

  • PDF

심전도 모니터링 스마트 의류 디자인을 위한 바디매핑 기반 전극 위치 연구 (A Study of Electrode Locations for Design of ECG Monitoring Smart Clothing based on Body Mapping)

  • 조하경;조상우
    • 한국의류산업학회지
    • /
    • 제17권6호
    • /
    • pp.1039-1049
    • /
    • 2015
  • The increase in the need for a 24 hour monitoring of biological signals has been accompanied by an increasing interest in wearable systems that can register ECG at any time and place. ECG-monitoring clothing is a wearable system that records heart function continuously, but there have been difficulties in making accurate measurements due to motion artifacts. Although various factors may cause noise in measurements due to motion, the variations in the body surface and clothing during movements that cause eventual the shifting and displacement of the electrodes is particularly noteworthy. Therefore, this study used biomedical body mapping and a motion-capture system to measure and analyze the changes in the body surface and garment during movements. It was deduced that the area where the friction and separation between the garment and skin is the lowest would be the appropriate location to place the ECG electrodes. For this study, 5 male and 5 female in their 20s were selected as subjects, and through their selected body movements, the changes in the garment and skin were analyzed using the motion-capture system. As a result, the area below the chest circumference and the area below the shoulder blades were proposed as the optimal location of electrode for ECG monitoring.

실시간 지능형 운전자 건강 및 주의 모니터링 시스템 (Real-time Intelligent Health and Attention Monitoring System for Car Driver)

  • 신흥섭;정상중;서용수;정완영
    • 한국정보통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.1303-1310
    • /
    • 2010
  • 최근 운전자의 건강상태 모니터링 및 졸음운전 방지를 위한 자동차용 부품관련 센서개발 및 시스템 연구들이 국내외에서 활발히 진행되고 있다. 본 논문은 이러한 운전자의 건강 상태 및 졸음운전을 점검하기 위해 체스트벨트 심전도 (ECG)와 손목착용형 산소포화도 (SpO2) 센서를 제작하여 생체신호를 측정하였으며, 측정된 심전도, 산소 포화도, 그리고 심장박동수 신호는 무선센서네트워크를 통해 수집, 전송 및 모니터링 등의 처리를 가능하게 하여 운전자에게 안전운행을 위한 정보를 제공하도록 하였다. 원격지인 서버 PC와 연결된 베이스스테이션으로 수집된 심전도와 용적맥파 신호에서 HRV (Heart Rate Variability, 심박변이도) 신호를 검출하였으며, 검출된 HRV 신호를 시간 영역과 주파수 영역에서의 해석을 통하여 운전자의 스트레스 지수 및 졸음 상태의 실시간 모니터링 및 졸음상태의 운전자에게 주의를 제공하기 위하여 알람을 제공하는 형태의 지능형 모니터링 시스템을 구현하였다.

A Cell Phone-based ECG, Blood Pressure Monitoring System for Personal Healthcare Applications using Wireless Sensor Network Technology

  • Toh, Sing-Hui;Lee, Seung-Chul;Chung, Wan-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.505-508
    • /
    • 2008
  • Electrocardiogram (ECG) and blood pressure (BP) are main vital signs which are the standards in most medical settings in assessing the most basic body functions. Multi parameters are desired in providing more information for health professionals in order to detect or monitor medical problems of patients more precisely. This study urges us to develop a robust wireless healthcare monitoring system which has multiple physiological signs measurements on real time that applicable to various environments which integrates wireless sensor network technology and code division multiple access (CDMA) network with extended feature of locally standalone diagnosis algorithms that implemented in tell phone. ECG signal and BP parameter of the patients are routinely be monitored, processed and analyzed in details at cell phone locally to produce useful medical information to ease patients for tracking and future reference purposes. Any suspected or unknown patterns of signals will be immediately forwarded to hospital server using cell phone for doctors' evaluation. This feature enables the patients always recognize the importance of self-health checking so that the preventive actions can be taken earlier through this analytic information provided by this monitoring system because "Prevention is better than Cure".

  • PDF

Realtime Wireless Monitoring of Abnormal ST in ECG Using PC Based System

  • Jeong, Gu-Young;Yu, Kee-Ho;Kim, Nam-Gyun;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.176-180
    • /
    • 2004
  • The ST-segment that the beginning part of T wave is the important diagnostic parameter to finding myocardial ischemia. Abnormal ST appears in two types. One is the level change, and the other is the pattern change. In this paper, we describe the monitoring of abnormal ST using PC based system. Hardware of this system consists of transmitter, receiver and PC. The function of transmitter is measuring ECG in three channels which are selected manually and transmitting the data to receiver by digital radio way. Connection with receiver and PC is by RS232C, and the data received on the PC is analyzed automatically by ECG analysis algorithm and saved to file. In the algorithm part for detecting abnormal ST, ST-segments are approximated by a polynomial. This method can detect all of the deviation and pattern change of ST-segment regardless the change in the heart rate or sampling rate. To gain algorithm reliability, the method rejects distorted polynomial approximation by calculation the difference between the approximated ST-segment and original ST-segment. In pre-signal processing, the wavelet transformation separates high frequency bands including QRS complex from the original ECG. Consequently, the process improves the performance of detecting each feature points.

  • PDF

중환자실 간호사들의 침상모니터 심전도 관찰 관련 지식 및 간호행위 (Intensive Care Unit Nurses' Knowledge and Nursing Practices regarding Bedside Electrocardiograph Monitoring)

  • 강정희;서인선;김지영
    • 한국간호교육학회지
    • /
    • 제20권1호
    • /
    • pp.60-70
    • /
    • 2014
  • Purpose: Bedside electrocardiograph (ECG) monitoring is continuously used for assessing patients' cardiac status in intensive care units. However, it has not been explored whether it is used with proper knowledge and nursing practices; if not, its usage will be limited and the risk for compromised patient safety might be significant. This study, therefore, explored knowledge and nursing practices regarding bedside ECG monitoring in nurses working at intensive care units. Methods: Participants in this survey research were a convenience sample of 156 nurses from 25 intensive care units distributed in five hospitals with more than 1,000 beds each in Seoul, South Korea. Results: Participants showed limited and incorrect knowledge and nursing practices. Only 4 (2.6%) participants correctly answered to all electrode placement sites of RA, LA, LL, and V1. Lead II was the most frequently monitored unit regardless of the main purpose of ECG monitoring, and nursing practices to manage noisy signals did not include skin care at the top priorities. Conclusion: Educators and clinicians alike need to make an effort to ensure that a safe level of knowledge and practices for the monitoring is maintained in order to make sure that patient outcomes are not compromised.