Browse > Article
http://dx.doi.org/10.5805/SFTI.2015.17.6.1039

A Study of Electrode Locations for Design of ECG Monitoring Smart Clothing based on Body Mapping  

Cho, Hakyung (Dept. of Merchandising, BLACKYAK Co. Ltd.)
Cho, Sang woo (Dept. of Sports Science, Hoseo University)
Publication Information
Fashion & Textile Research Journal / v.17, no.6, 2015 , pp. 1039-1049 More about this Journal
Abstract
The increase in the need for a 24 hour monitoring of biological signals has been accompanied by an increasing interest in wearable systems that can register ECG at any time and place. ECG-monitoring clothing is a wearable system that records heart function continuously, but there have been difficulties in making accurate measurements due to motion artifacts. Although various factors may cause noise in measurements due to motion, the variations in the body surface and clothing during movements that cause eventual the shifting and displacement of the electrodes is particularly noteworthy. Therefore, this study used biomedical body mapping and a motion-capture system to measure and analyze the changes in the body surface and garment during movements. It was deduced that the area where the friction and separation between the garment and skin is the lowest would be the appropriate location to place the ECG electrodes. For this study, 5 male and 5 female in their 20s were selected as subjects, and through their selected body movements, the changes in the garment and skin were analyzed using the motion-capture system. As a result, the area below the chest circumference and the area below the shoulder blades were proposed as the optimal location of electrode for ECG monitoring.
Keywords
body mapping; 3D motion capture; skin change rate; clothing change rate; optimal location of electrode;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Watkins, S. M. (1984). Clothing: The portable environment. Ames, IA: Iowa State University Press.
2 Yu, J. A., Sun, Y., & Kim, K. J. (2012). Preparation of conductive nanoweb through electrospinning followed by electroless silver-plating and its application as dry-type electrode for ECG measurement. Textile Science and Engineering, 49(1), 47-55. doi:10.12772/TSE.2012.49.1.047   DOI
3 Mohindra, R., Sapp, J. L., Clements, J. C., & Horáček, B. N. (2007, September). Use of body-surface potential mapping and computer model simulations for optimal programming of cardiac resynchronization therapy devices. Proceeding of Conference of Computers in Cardiology (pp. 69-72). Durham, North Carolina, US: IEEE. doi:10.1109/CIC.2007.4745423   DOI
4 ‘Motion capture system’. (2011, August 19). Dooree system. Retrieved from http://www.dooreesystem.com/cafe/view.html
5 Ornato, J. P., Menown, I. B., Riddell, J. W., Carley, S., Mackway-Jones, K., Higgins, G. L., Peberdy, M. A., Kontos, M. C., Maynard, S. J., & Jennifer Adgey, A. A. (2002). 80-Lead body map detects acute ST elevation myocardial infarction missed by standard 12-lead electrocardiography. Journal of the American College of Cardiology, 39(s2), 332. doi:10.1016/S0735-1097(02)81492-9   DOI
6 Self, W. H., Mattu, A., Martin, M., Holstege, C., Preuss, J., & Brady, W. J. (2006). Body surface mapping in the ED evaluation of the patient with chest pain: use of the 80-lead electrocardiogram system. The American Journal of Emergency Medicine, 24(1), 87-112. doi:10.1016/j.ajem.2005.04.008   DOI
7 Sobieszczanska, M., Jaqielski, J., Nowak, B., Pilecki, W., & Kalka, D. (2007). Appraisal of BSPM obtained from the limited lead system. The Anatolian Journal of Cardiology, 7, 11-13.
8 Kang, D., Cho, H. K., Song, H. Y., Cho, H. S., Lee, J. H., Lee, K. H., Koo, S. M., Lee, Y. J., & Lee, J. W. (2008). A study on a prototype of ECG-sensing clothing based on textile electrode for lifestyle monitoring. Korean Journal of the Science of Emotion and Sensibility, 11(3), 419-426.
9 Song, H. Y., Lee, J. H., Kang, D., Cho, H., Cho, H. S., Lee, J. W., & Lee, Y. J. (2010). Textile electrodes of jacquard woven fabrics for biosignal measurement. The Journal of the Textile Institute, 101(8), 758-770. doi:10.1080/00405000903442086   DOI
10 Tysler, M., Kneppo, P., Turzová M., Svehlíová J., Karas, S., Filipová, E., Háa, K., & Filipová S. (2007). Noninvasive assessment of local myocardium repolarization changes using high resolution surface ECG mapping. Physiological Research, 56, 133-141.
11 Jeong, Y. H., & Yang, Y. M. (2012). Development of tight-fitting upper clothing for measuring ECG -A focus on weft reduction rate and subjective assessment-. Journal of the Korean Society of Clothing and Textiles, 36(11), 1174-1185. doi:10.5850/JKSCT.2012.36.11.1174   DOI
12 Koo, H. R., Lee, Y. J., Gi, S., Khang, S., Lee, J. H., Lee, J. H., Lim, M. G., Park, H. J., & Lee, J. W. (2014). The effect of textile-based inductive coil sensor positions for heart rate monitoring. Journal of Medical Systems, 38(2), 1-12. doi:10.1007/s10916-013-0002-0   DOI
13 Koo, H. R., Lee, Y. J., Gi, S., Lee, S. P., Kim, K. N., Kang, S. J., Lee, J. W., & Lee, J. H. (2015). Effect of module design for a garment-type heart activity monitoring wearable system based on non-contact type sensing. Journal of the Korean Society of Clothing and Textiles, 39(3), 369-378. doi:10.5850/JKSCT.2015.39.3.369   DOI
14 Koo, S. M. (2008). A study on the design of re-modularized smart clothing for ECG-sensing. Unpublished master’s thesis, Yonsei University, Seoul.
15 Cho, H. K., & Lee, J. H. (2015b). A study on the optimal positions of ECG electrodes in a garment for the design of ECG-monitoring clothing for male. Journal of Medical Systems, 39(9), 1-14. doi:10.1007/s10916-015-0279-2   DOI
16 Cho, H. K., Song, H. Y., Cho, H. S., Goo, S. M., & Lee, J. H. (2010). A study on the design of functional clothing for vital sign monitoring - Based on ECG sensing clothing. Korean Journal of the Science of Emotion and Sensibility, 13(3), 467-474.
17 Lee, Y. J. (2010). Development of textile electrode measuring system for biopotential signals. Unpublished master’s thesis, Kunkook University, Chungjoo.
18 Min, S. D., Yun, Y. H., Lee, H. S., Shin, H. S., Cho, H. K., Hwang, S. C., & Lee, M. H. (2010). Respiration measurement system using textile capacitive pressure sensor. The Transactions of the Korean Institute of Electrical Engineers P, 59(1), 58-63.
19 Cömert, A., Honkala, M., & Hyttinen, J. (2013). Effect of pressure and padding on motion artifact of textile electrodes. Biomedical Engineering Online, 12(1), 26. doi:10.1186/1475-925X-12-26   DOI
20 Finlay, D. D., Nugent, C. D., Donnelly, M. P., McCullagh, P. J., & Black, N. D. (2008). Optimal electrocardiographic lead systems: practical scenarios in smart clothing and wearable health systems. Information Technology in Biomedicine, IEEE Transactions on, 12(4), 433-441. doi:10.1109/TITB.2007.896882.   DOI
21 Fletcher, G. F., Balady, G. J., Amsterdam, E. A., Chaitman, B., Eckel, R., Fleg, J., Froelicher, V. F., Leon, A. S., Pina, I. L., & Bazzarre, T. (2001). Exercise standards for testing and training a statement for healthcare professionals, the American heart association. Circulation, 104(14), 1694-1740. doi:10.1161/hc3901.095960   DOI
22 Jang, S. E. (2006). Effect of fabric elasticity and body movement on performance of electrocardiogram signal monitoring clothing. Unpublished master’s thesis, Yonsei University, Seoul.
23 Cho, H. K., & Cho, S. W. (2015a). A study of sensing location for ECG monitoring based on the skin change rate. Fashion & Textile Research Journal, 17(5), 844-893. doi:10.5805/SFTI.2015.17.5.844   DOI
24 Jeong, Y. H., Kim, S. H., & Yang, Y. M. (2010). Development of tight-fitting garments with a portable ECG monitor to measure vital signs. Journal of the Korean Society of Clothing and Textiles, 34(1), 112-125. doi:10.5850/JKSCT.2010.34.1.112   DOI