• Title/Summary/Keyword: EC concentration

Search Result 919, Processing Time 0.024 seconds

Characteristics of Carbonaceous and Organic Components in PM2.5 over the Yellow Sea (서해상 PM2.5 내 탄소성분 및 유기성분의 화학적 특성)

  • Yoo, Ha Young;Kim, Ki Ae;An, Hyunjin;Lee, Yeonjung;Zihui, Teng;Yoo, Hee-Jung;Kim, Jeong Eun;Ko, Hee-Jung;Sung, Min-Young;Choi, Jin-Soo;Park, Jin-Soo;Lee, Ji Yi
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.267-282
    • /
    • 2021
  • Characteristics of carbonaceous components and organic compounds in PM2.5 over the atmosphere of the Yellow Sea were investigated. PM2.5 samples were collected onboard the meteorological research vessel, GISANG 1, over the Yellow Sea during the YES-AQ campaign in 2018 and 2019, respectively. The average concentrations of carbonaceous components in this region were 2.59 ± 1.59 ㎍ m-3 for the OC, 0.24 ± 0.10 ㎍ m-3 for the EC, 2.14 ± 1.30 ㎍ m-3 for the WSOC and 1.17 ± 0.94 ㎍ m-3 for the HULIS-C, respectively. The total concentration of 56 organic compounds (ΣOCs) accounts for 10% of OC. The main group among organic compounds were dicarboxylic acids which account for 57% of ΣOCs, followed by n-alkanoic acids accounting for 34% of ΣOCs. In n-alkanoic acid distribution, hexanoic (C6:0) and octanoic (C8:0) acids which are low molecular weight n-alkanoic acids and known as emitted from marine biogenic activities were dominant in this region. Furthermore, non-HULIS-C fraction increased when the air mass originated from the marine region rather than the continental region. When the Asian dust episode was observed, the WISOC concentrations along with the levoglucosan were increased, while the haze episodes caused the increase of WSOC, HULIC-S and DCAs. In this study, we found that the components of carbonaceous and organic aerosols in PM2.5 over the Yellow Sea were changed with the specific air pollution episodes. It indicates that the physicochemical properties of PM2.5 can be changed by the air pollution episodes in this region.

Relation of Organic Matter Content and Nitrogen Mineralization of Soils Collected from Pepper Cultivated Land (고추 재배 밭에서 채취한 토양의 유기물 함량과 질소 무기화 량의 관계)

  • Lee, Yejin;Lee, Seulbi;Kim, Yangmin;Song, Yosung;Lee, Deogbae
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.119-123
    • /
    • 2019
  • BACKGROUND: Estimation of soil nitrogen supply is essential to manage nitrogen fertilization in arable land. In Korea, nitrogen fertilization is recommended based on the soil organic matter content because it is difficult to assess nitrogen (N) mineralization of upland soils directly. In this study, the relationship between soil organic matter (SOM) content and N mineralization was investigated to explore the limitation of using SOM in predicting soil N mineralization. METHODS AND RESULTS: Soil samples from the 0 to 10 cm depth were collected from 18 individual pepper cultivated fields in Tae-an and Chung-yang provinces before fertilization. N mineralization in the soils was quantified using incubation for 70 days at $30^{\circ}C$. The mineralizable soil N (MSN) was positively correlated with SOM, and the relation equation between MSN and SOM was '$MSN(kg\;10a^{-1})=0.2933{\ast}SOM(g\;kg^{-1})+0.0897$ ($r^2=0.6224$, p<0.001)'. However, the differences of N mineralization among the soils with the similar concentrations of soil organic matter were about 3 to 4.6 times, suggesting that the other soil factors such as total N concentration or EC should affect N mineralization. CONCLUSION: We concluded that SOM alone could not reflect the capacity of soil to supply N that is used for recommendation of N fertilization rate. Therefore, other soil properties should be considered to improve N fertilization management in arable land for sustainable agriculture.

A Comparison Study on Reinforcement Behaviors of Functional Fillers in Nitrile Rubber Composites

  • Seong, Yoonjae;Lee, Harim;Kim, Seonhong;Yun, Chang Hyun;Park, Changsin;Nah, Changwoon;Lee, Gi-Bbeum
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2020
  • To investigate the reinforcing effects of functional fillers in nitrile rubber (NBR) materials, high-structure carbon black (HS45), coated calcium carbonate (C-CaCO3), silica (200MP), and multi-walled carbon nanotubes (MWCNTs) were used as functional filler, and carbon black (SRF) as a common filler were used for oil-resistant rubber. The curing and mechanical properties of HS45-, 200MP-, and MWCNT-filled NBR compounds were improved compared to those of the SRF-filled NBR compound. The reinforcing effect also increased with a decrease in the particle size of the fillers. The C-CaCO3-filled NBR compound exhibited no reinforcing effect with increasing filler concentration because of their large primary particle size (2 ㎛). The reinforcing behavior based on 100% modulus of the functional filler based NBR compounds was compared by using several predictive equation models. The reinforcing behavior of the C-CaCO3-filled NBR compound was in accordance with the Smallwood-Einstein equation whereas the 200MP- and MWCNT-filled NBR compounds fitted well with the modified Guth-Gold (m-Guth-Gold) equation. The SRF- and HS45-filled NBR compounds exhibited reinforcing behavior in accordance with the Guth-Gold and m-Guth-Gold equations, respectively, at a low filler content. However, the values of reinforcement parameter (100Mf/100Mu) of the SRF- and HS45-filled NBR compounds were higher than those determined by the predictive equation model at a high filler content. Because the chains of SRF composed of spherical filler particles are similarly changed to rod-like filler particles embedded in a rubber matrix and the reinforcement parameter rapidly increased with a high content of HS45, the higher-structured filler. The reinforcing effectiveness of the functional fillers was numerically evaluated on the basis of the effectiveness index (��SRF/��f) determined by the ratio of the volume fraction of the functional filler (��f) to that of the SRF filler (��SRF) at three unit of reinforcing parameter (100Mf/100Mu). On the basis of their effectiveness index, MWCNT-, 200MP-, and HS45-filled compounds showed higher reinforcing effectiveness of 420%, 70%, and 20% than that of SRF-filled compound, respectively whereas C-CaCO3-filled compound exhibited lower reinforcing effectiveness of -50% than that of SRF-filled compound.

Protective Effects of Medicinal Herbal Mixture (HME) through Akt/FoxO3 Signal Regulation in Oxidative Damaged C2C12 Myotubes (C2C12 myotube의 산화적 손상에 대한 혼합 한약재 추출물(HME)의 Akt/FoxO3 신호 조절을 통한 보호 효과)

  • Kim, So Young;Choi, Moon-Yeol;Lee, Un Tak;Choo, Sung Tae;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.37 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • Objectives : In this study, we investigated the synergistic protective effects of medicinal herbal mixture (HME) including Mori Ramulus (MR), Acanthopanacis Cortex (AC), Eucommiae Cortex (EC), and Black soybean (BS) in C2C12 cells, mouse myoblasts. Methods : Effects of HME on cell viability of C2C12 myoblasts were monitored by MTT assay. Anti-atrophic activity of HME was determined in myoblasts and myotubes under oxidative stress by H2O2. C2C12 myoblasts were differentiated into myotubes in a medium containing 2% horse serum for 6 days. After that, we measured that expression of MyoD and myogenine, the myogenic regulatory factors, to identify the mechanism of inhibiting muscle atophy after HME treatment. In addition, suppression of phosphorylation of Akt, FoxO3a and MARF-1, transcription factors of degradation proteins were analyzed via western blotting. Results : As a result of MTT, HME there was no show cytotoxicity up to a concentration of 1 mg/ml. The cytoprotective effects on oxidative stressed myoblast and myotube was better in HME extract than those of MR, AC, EU, and BS, respectively. HME treatment in Myotube induced by oxidative stress after H2O2 treatment increased Myo D, Myogenine activation, and Akt, FoxO3a phosphorylation and decreased expression of MuRF-1. As the results, HME has synergistic effects on protection against proteolysis of C2C12 myotubes through activation of the Akt signaling pathway under oxidative stress. Conclusions : These results suggest that HME may also be useful as a preventing and treating material for skeletal muscle atrophy caused by age-related diseases.

Selection of Nutrient Solutions and Substrates for Radish (Raphanus sativus L. var. sativus) Growth (20일 무(Raphanus sativus L. var. sativus)의 수경재배에 적합한 양액 및 배지의 선발)

  • Park, K.W.;Hong, H.Y.
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.236-247
    • /
    • 1996
  • The main objective of this study was to evaluate the effectiveness of nutrient solutions, substrates, and nutrient solution concentrations in substrate culture of radish(Raphanus sativus L. var. sativus). Cooper's, Hoagland & Arnon' 5, and Yamazaki's solution were used to determine the most suitable nutrient solution in deep flow culture(DFC). In result, Yamazaki's solution treatment showed better results than Hoagland's and Cooper's solution treatments in leaf length, leaf number, shoot and root fresh weights. Cooper's solution was much worse than others. Root shape index were low as 0.6 in all treatments. The selection of suitable was conducted among 14 kinds of substrates which were used commercially, such as sand, perlite and peatmoss, in substrates culture. Sand was the most proper in radish growth and shortened the growth periods. Sand also showed better results then others in leaf length, leaf number, shoot and root fresh weight. On the contrary, radish growth in peatmoss was the worst. Generally, root shape index was higher in substrate than in DFC. In order to investigate the suitable ionic strength in radish, Yamazaki's solution was treated with EC of 0.5, 1.0, 1.5, and 2.0 mS/cm. Generally radish growth above 1.0 mS/cm concentration was good, and the best result was shown in 1.5 mS/cm. Vitamin C contents were not significantly different in the roots of radish grown under 1.0 mS/cm or more. The highest vitamin C content was shown in 0.5 mS/cm, and so was thiocyanate content. Anthocyanin contents increased with the increase of the ionic strength in nutrient solution. Mineral nutrient contents had no significant statistical differences between the treatments, but potassium content was remarkably high in 1.5 mS/cm.

  • PDF

Changes of Chemical Properties during Liquid Fertilizer Processing using Different Organic materials (유기물을 이용한 액비 제조시 발효액의 화학적 특성 변화)

  • Lee, Guang-Jae;Jeon, Jong-Ok;Park, Jae-Ho;Nam, Sang-Young;Kim, Tae-Jung
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.507-512
    • /
    • 2011
  • This study was carried out to investigate the chemical characteristics of different organic liquid fertilizer during fermentation at plastic house in Chungbuk Agricultural Research and Extension Service. Chicken dung, soybean meal, and rice bran were used for nutrient sources. The obtained results from this study were summarized as follows; Total nitrogen contained the highest in soybean meal as 55 mg·kg-1, and phosphate and potassium contained high in chicken dung and rice bran in organic liquid fertilizer materials. The pH of chicken dung was near 7.0, that of soybean meal and rice bran indicated acidity(pH 3.8~4.4). The electrical conductivity of chicken dung consistently increased during fermentation, and that of soybean meal and rice bran increased and decreased early season and increased at late incubation period. Hydrogen sulfide gas occurrence of chicken dung was 3,200 mg·L-1 at early season and 1,600 mg·L-1 at late incubation period, and that of soybean meal and rice bran treatments were not or very low concentration of hydrogen sulfide gas during manufacturing period. The nitrogen and calcium content of organic liquid fertilizer were the higher in chicken dung and soybean meal than rice bran. The phosphate and magnesium content of rice bran was the high as 5.6 g·kg-1 and 1.5 g·kg-1, respectively. There was no difference in potassium content among the different liquid fertilizers during fermentation.

Growth and Nutrient Dynamics of Planted Tree Species Following Fertilization in a Fire-Disturbed Urban Forest (도시 숲 산불피해지의 시비에 따른 식재 수목의 생장 및 양분 동태)

  • Choonsig Kim;Gyeongwon Baek
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.143-152
    • /
    • 2024
  • This study was conducted to evaluate the growth and nutrient dynamics in response to fertilization of four tree species (LT: Liriodendron tulipifera L.; PY: Prunus yedoensis Matsumura; QA: Quercus acutissima Ca rruth; a nd PT: Pinus thunbergii Parl.) planted in a fire-disturbed urban forest in Bongdaesan (Mt.), Ulsan Metropolitan Area, South Korea. The trees were planted in 2009, and compound fertilizers (N6P4K1) were applied in April 2013 and March 2014. Tree growth, soil, and foliage nutrients were examined from March 2013 to October 2016. The regression coefficients for the increment of the diameter at breast height (DBH) significantly differed between the fertilized and unfertilized plots, suggesting the significant effects of fertilization. By contrast, fertilization did not affect the coefficients for height increments. Regarding soil nutrient contents, organic carbon and total nitrogen concentrations were lower in the fertilized plots than in the unfertilized plots, whereas available phosphorus, exchangeable calcium, and magnesium concentrations were higher in the fertilized plots than in the unfertilized plots. In foliage, nitrogen and phosphorus concentrations were higher in the fertilized plots than in the unfertilized plots, whereas potassium, calcium, and magnesium concentrations were not affected by fertilization. Nutrient concentration of foliage among the tree species were higher in LT and PY than in QA and PT. These results suggest that fertilizers may be used to enhance soil fertility and the growth and nutrient status of tree species planted in a fire-disturbed urban forest.

Comparison of Basal Physicochemical Changes of Reused Rockwool Substrate in Hydroponic Tomato Cultivation (수경재배 토마토 재사용 암면 배지의 기초 물리화학성 변화 비교)

  • Jae Seong Lee;Jong Hwa Shin
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.114-119
    • /
    • 2024
  • Rockwool substrate has superior physicochemical characteristics and is often used in crop cultivation. However, rockwool substrate has the disadvantages of high purchase cost and difficulty in disposal. Reuse of substrate can compensate for these disadvantages. Substrate must be disinfected and rehydrated during reuse, and various physicochemical changes during this process must also be considered. This study was to compare the physical properties of two types of rockwool substrates (reused and unused) and to evaluate the reuse potential of rockwool substrate by analyzing the chemical properties of the reused rockwool substrate during the rehydration process. The experiment on substrate physicochemical properties comparison was conducted from March to August 2023 using used rockwool substrates in tomato cultivation and unused rockwool substrates. Drainage time, drainage volume, and substrate weight were measured using load cells installed at the top and bottom of the irrigation monitoring system. The reused rockwool substrate weight and density were higher than those of the unused rockwool substrate, while the average drainage time after irrigation was 1.5 times longer for the reused rockwool than for the unused rockwool. The salinity concentration in different parts of the reused rockwool substrate was found to be lower in the reused rockwool substrate compared to the unused rockwool substrate. The electrical conductivity of the drainage was at its peak at the beginning of the drainage and decreased exponentially as the drainage volume increased. Change in electrical conductivity of the drainage over the irrigation time showed an exponential decay pattern. Through the experiments, the potential reusability of the rock wool substrate was assessed by conducting a comparative analysis of its physicochemical properties.

Effect of Na+ ion on Changes in Hydraulic Conductivity and Chemical Properties of Effluent of Reclaimed Sandy Soil Column (토양중 Na+ 이온이 간척지 토주의 수리전도도와 용출수의 화학성 변화에 미치는 영향)

  • Ryu, Jin-Hee;Chung, Doug-Young;Yang, Chang-Hyu;Lee, Sang-Bok;Choi, Weon-Young;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.454-459
    • /
    • 2009
  • In order to identify the effect of soil salinity on saturated hydraulic conductivity in reclaimed paddy soils, we established the soil columns uniformly packed with soils collected at every 20 cm up to 60 cm from the reclaimed paddy area with high and low salinity which has been cultivated rice plants for the last 30 years. The soil textures were sandy loam and loamy sand for high-salinity and low-salinity topsoils, respectively. For high-salinity and low-salinity soils the ECes were ranged from 25.2 to $37.8dS\;m^{-1}$ and 3.0 to $3.4dS\;m^{-1}$ while the ESPs were ranged from 7.70 to 20.84 % and from 5.12 to 11.33 %, respectively. The bulk densities of the soil columns were adjusted to $1.15{\pm}0.03g\;cm^{-3}$. The results of the soil column experiments shows that the stabilized saturated hydraulic conductivity of low-salinity soil was $0.62cm\;hr^{-1}$ at the topsoil while there were little water flow at the bottom of the soil columns packed with high-salinity soils. After removal of $Na^+$ ions with $1N\;NH_4OAc$ from the high-salinity soil, Ksat of the saline soil was drastically increased to $0.23cm\;hr^{-1}$. Soil columns of high-salinity topsoil treated with four different concentration of NaCl influent after removal of soluble and exchangeable cations with $1N\;NH_4OAc$ show Ksat in the range of $0.1{\sim}0.15cm\;hr^{-1}$ and the Ksat slightly decreased as the concentration of NaCl influent was increasing. Conclusively, we could assume that $Na^+$ can be significantly contributed to the saturated hydraulic conductivity in newly reclaimed sandy soil.

Environmental Impact Assessment and Evaluation of Environmental Risks (환경영향평가와 환경위험의 평가)

  • Niemeyer, Adelbert
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.41-48
    • /
    • 1995
  • In former times the protection of our environment didn't play an important role due to the fact that emissions and effluents were not considered as serious impacts. However, opinions and scientific measurements meanwhile confirmed that the impacts are more serious than expected. Thus measures to protect our earth has to be taken into consideration. A part of these measures in the Environmental Impact Assessment (EIA). One of the most important parts of the EIA is the collection of basic datas and the following evaluation. Experience out of the daily business of Gerling Consulting Group shows that the content of the EIA has to be revised and enlarged in certain fields. The historical development demonstrated that in areas in which the population and the industrial activities reached high concentration there is a high necessity to develop strict environmental laws and regulations. Maximum values of the concentration of hazardous materials were fixed concerning the emission into and water. Companies not following these regulations were punished. The total amount of environmental offences increased rapidly during the last decade, at least in Germany. During this development the public consciousness concerning environmental affairs increased as well in the industrialized countries. But it could clearly be seen that the development in the field of environmental protection went into the wrong direction. The technologies to protect the environment became more and more sophisticated and terms as: "state of the art" guided more and more to lower emissions, Filtertechnologies and wastewater treatment for example reached a high technical level-but all these sophisticated technologies has one and the same characteristic: they were end-of-the pipe solutions. A second effect was that this kind of environmental protection costs a lot of money. High investments are necessary to reduce the dust emission by another ppm! Could this be the correct way? In Germany the discussion started that the environmental laws reduce the attractivity to invest or to enlarge existing investments within the country. Other countries seem to be not so strict with controlling the environmental laws which means it's simply cheaper to produce in Portugal or Greece. Everybody however knows that this is not the correct way and does not solve the environmental problems. Meanwhile the general picture changes a little bit and we think it changes into the correct direction "End-of-the-pipe" solutions are still necessary but this word received a real negative touch and nobody wants to be brought into connection with this word received a real negative touch and nobody wants to be brought into connection with this word especially in connection with environmental management and safety. Modern actual environmental management starts in a different way. Thoughts about emissions start in the very beginning of the production, they start with the design of the product and modification of traditional modes of production. Basis of these ideas are detailed analyses of products and processes. Due to the above mentioned facts that the public environmental consciousness changed dramatically a continous environmental improvement of each single production plant has to be guarantied. This question is already an important question of the EIA. But it was never really checked in a wholistic approach. Environmental risks have to be taken into considerations during the execution of an EIA. This means that the environmental risks have to be reduced down to a capable risk-level. Environmental risks have to be considered within the phase of planning, during the operation of a plant and after shut down. The experience shows that most of the environmental relevant accidents were and caused by human fault. Even in highly protected plants the human risk-factor can not be excluded during evaluation of the risk-potential. Thus the approach of an EIA has to regard technical evaluations as well as organizational thoughts and the human factor. An environmental risk is a threat to the environment. An analysis of the risk concerning the organizational and human aspect however never was properly executed during an EIA. A possible solution could be to use an instrument as the actual EMAS (Environmental Management System) of the EC for more accurate evaluation of the impact to the environment during an EIA. Organizations or investors could demonstrate by an approved EMAS or even by showing their installment of EMAS that not only the technical level of the planned investment meets the requested standards but as well the actual or planned management is able to reduce the environmental impact down to a bearable level.

  • PDF