• Title/Summary/Keyword: EBSD

Search Result 171, Processing Time 0.029 seconds

Effect of Nano Grain Growth on Coefficient of Thermal Expansion in Electroplated Fe-Ni Invar Alloy (Fe-Ni Invar 합금에서 나노 결정립 성장이 열팽창계수에 미치는 영향)

  • Yim, Tai Hong;Choe, Byung Hak;Jeong, Hyo Tae
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.515-519
    • /
    • 2014
  • The aim of this paper is to consider the effect of annealing on the coefficient of thermal expansion (CTE) of electroplated Invar Fe-Ni alloy. The CTE of the as-electroplated alloy is lower than those of alloys annealed at $400^{\circ}C$ and $800^{\circ}C$. XRD peaks become sharper as the as-electroplated alloy is annealed, which means the grain growth. The average grain sizes of as-electroplated and as-annealed alloys at $400^{\circ}C$ and $800^{\circ}C$ are 10 nm, 70 nm, and $2{\mu}m$, respectively, as determined by TEM and EBSD analyses. The CTE variation for the various grain sizes after annealing may come from the magnetostriction effect, which generates strain due to changes in the magnetization state of the alloys. The thermal expansion coefficient is considered to be affected by nano grain size in electroplated Fe-Ni Invar alloys. As grain size decreases, ferromagnetic forces might change to paramagnetic forces. The effect of lattice vibration damping of nano grain boundaries could lead to the decrease of CTE.

Microstructure Evolution of 15Cr ODS Steel by a Simple Torsion Test (단순 전단변형에 의한 15Cr 산화물 분산강화 강의 미세조직 변화)

  • Jin, Hyun Ju;Kang, Suk Hoon;Kim, Tae Kyu
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.271-276
    • /
    • 2014
  • 15Cr-1Mo base oxide dispersion strengthened (ODS) steel which is considered to be as a promising candidate for high- temperature components in nuclear fusion and fission systems because of its excellent high temperature strength, corrosion and radiation resistance was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Torsion tests were performed at room temperature, leading to two different shear strain routes in the forward and reverse directions. In this study, microstructure evolution of the ODS steel during simple shearing was investigated. Fine grained microstructure and a cell structure of dislocation with low angle boundaries were characterized with shear strain in the shear deformed region by electron backscattered diffraction (EBSD). Grain refinement with shear strain resulted in an increase in hardness. After the forward-reverse torsion, the hardness value was measured to be higher than that of the forward torsion only with an identical shear strain amount, suggesting that new dislocation cell structures inside the grain were generated, thus resulting in a larger strengthening of the steel.

Charactetristical Analysis of the Microstructure and the Stress-Strain Curves for the Evaluation of 7xxx Series Aluminum Extrudates (7xxx계급 알루미늄 열간 압출재의 평가를 위한 미세조직과 응력-변형률 곡선의 분석)

  • Lee, S.Y.;Woo, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.307-314
    • /
    • 2018
  • Simple tensile tests and microstructural investigations have been performed on extrudates of high strength aluminum alloys such as 7075, 7021 and 7xxx(Sc) to understand correlation between extruding conditions and extruded properties. Tensile specimens which were taken from different locations at the same cross section of an extrudate were tested at room temperature and with a strain rate of $8.9{\times}10^{-5}/s$. The microstructures according to the locations at the cross section have been observed using optical microscopy and electron back-scattered diffraction (EBSD) mapping to characterize the effect on stress-strain curve. The results could be classified in three types independent of alloying contents and extusion methods. The fine differences in the stress-strain curves were resulted from inhomogenity in the microstructures according to locations of an extrudate which were performed through instantaneous extruding conditions such as temperature, strain rate and strain.

Effect of Strain Rate on Microstructure Formation Behaviors of AZ80 Magnesium Alloy During High-temperature Deformation (고온변형 중의 AZ80 마그네슘 합금의 미세조직 형성 거동에 미치는 변형속도의 영향)

  • Park, Minsoo;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.180-184
    • /
    • 2020
  • The crystallographic texture plays an important role in both the plastic deformation and the macroscopic anisotropy of magnesium alloys. In previous study for AZ80 magnesium alloy, it was found that the main texture components of the textures vary with the deformation conditions at high temperatures. Also, the basal texture was formed at stress of more than 15-20 MPa and the non-basal texture was formed at stress of less than 15-20 MPa. Therefore, in this study, uniaxial compression deformation of AZ80 magnesium alloy was carried out at high temperature (stress of 15-20 MPa). The uniaxial compression deformation is performed at temperature of 723 K and strain rate 3.0 × 10-3s-1, with a strain range of between -0.4 and -1.3. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. EBSD measurement was also conducted in order to observe spatial distribution of orientation. As a result of high temperature deformation, the main component of texture and its development vary depending on deformation condition of this study.

Fabrication and Microstructure/Properties of Bulk-type Tantalum Material by a Kinetic Spray Process (Kinetic Spray 공정을 이용한 벌크형 탄탈륨 소재의 제조 및 미세조직/물성)

  • Lee, Ji-Hye;Kim, Ji-Won;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • A bulk-type Ta material is fabricated using the kinetic spray process and its microstructure and physical properties are investigated. Ta powder with an angular size in the range $9-37{\mu}m$ (purity 99.95%) is sprayed on a Cu plate to form a coating layer. As a result, ~7 mm-sized bulk-type high-density material capable of being used as a sputter material is fabricated. In order to assess the physical properties of the thick coating layer at different locations, the coating material is observed at three different locations (surface, center, and interface). Furthermore, a vacuum heat treatment is applied to the coating material to reduce the variation of physical properties at different locations of the coating material and improve the density. OM, Vickers hardness test, SEM, XRD, and EBSD are implemented for analyzing the microstructure and physical properties. The fabricated Ta coating material produces porosity of 0.11~0.12%, hardness of 311~327 Hv, and minor variations at different locations. In addition, a decrease in the porosity and hardness is observed at different locations upon heat treatment.

Carbide Precipitation Behavior During Normalizing Heat Treatment in Low-alloyed Cr-Mo-V-Ti Steel (Cr-Mo-V-Ti 저합금강에서 노멀라이징 열처리조건에 따른 석출물의 거동)

  • Kim, Hong-Ki;Na, Hye-Sung;Lee, Sang-Hoon;Kang, Chung-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Heat treatment condition for dissolution of the M23C6 carbides in 2.25Cr-1Mo-V-Ti material for thermal power plant tube was investigated using a dilatometer method. 2.25Cr-1Mo-V-Ti material was heat-treated at $900{\sim}1,100^{\circ}C$ for 0, 10, 30 min to find the proper dissolution condition of M23C6 carbides. The phase identification and volume fraction of the carbide were measured by using OM, SEM, EBSD and TEM analysis. Optimal heat treatment condition of M23C6 carbide dissolution was selected by predicting dissolution temperature of carbide using Bs points appeared at dilatometer curve. Experimental results showed that the conditions of carbide dissolution was 900, 1,000, $1,100^{\circ}C$ for 30 min. Eventually, the optimal heat treatment condition for dissolution was 30 min at $1,000^{\circ}C$ considering the minimum coarsening of Austenite grain size.

Analysis of Microstructures and Mechanical Properties of Billet and Extrudate according to Heat Treatment for the Extrusion of 7075 alloy (7075 합금의 압출에서 원소재 빌렛과 압출재의 열처리에 따른 미세조직 및 기계적 특성 분석)

  • Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.5
    • /
    • pp.232-238
    • /
    • 2020
  • Heating experiments using the 7075 aluminum alloy in the state of billet and extrudate have been performed to investigate the pertinent ranges of working temperatures and holding times for the application to the various automobile parts. The 7075 specimens from raw billet of 152 mm in diameter and 400 mm in length prior to extrusion were used for heating with a holding time of 10 minutes at temperatures between 380℃ and 550℃. Then, an extrusion process using the billet has been fulfilled at 380℃ with extrusion speed of 0.8 mm/min to get an plate-type extrudate of 75 mm in width and 4.2 mm in thickness. The samples from the extrudate were subjected to heating experiments at temperatures between 380℃ and 440℃ with holding times such as 10 min, 30 min, 60 min and 120 min at each heating temperature. The microstructures were investigated on the optical and EBSD micrographs. The hardness measurement and the tensile test have been performed to investigate the effect of the heat treatment on the mechanical property. The results showed for the 7075 extrusion process that the safe heating of billet can be performed below 450℃ and the extrusion can be done safely up to 400℃.

Fabrication and Tensile Properties of Alloy 617 base ODS Alloy (Alloy 617계 산화물 분산강화(ODS) 합금의 제조와 인장특성)

  • Min, Hyoung-Kee;Kang, Suk-Hoon;Kim, Tae-Kyu;Han, Chang-Hee;Kim, Do-Hyang;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.482-487
    • /
    • 2011
  • Alloy 617, Ni-22Cr-12Co-9Mo base oxide dispersion strengthened alloy was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Uniaxial tensile tests were performed at room temperature and at $700^{\circ}C$. Compared with the conventional Alloy 617, ODS alloy showed much higher yield strength and tensile strength, but lower elongation. Fracture surfaces of the tensile tested specimens were investigated in order to find out the mechanism of fracture mode at each test temperature. Grain adjustment during tensile deformation was analyzed by electron backscattered diffraction mapping, inverse pole figures and TEM observation.

Effect of Ni Bond Coat on Adhesive Properties of Fe Coating Thermal Sprayed on Al Substrate (Ni 본드코팅이 Al 기지에 고온 용사 코팅된 Fe 코팅층의 접합특성에 미치는 영향)

  • Kwon, Eui-Pyo;Kim, Dae-Young;Lee, Jong-Kweon
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.542-548
    • /
    • 2016
  • The influence of NiCrAlY bond coating on the adhesion properties of an Fe thermal coating sprayed on an Al substrate was investigated. By applying a bond coat, an adhesion strength of 21MPa was obtained, which was higher than the 15.5MPa strength of the coating without the bond coat. Formation of cracks at the interface of the bond coat and the Al substrate was suppressed by applying the bond coat. Microstructural analysis of the coating interface using EBSD and TEM indicated that the dominant bonding mechanism was mechanical interlocking. Mechanical interlocking without crack defects in the coating interface may improve the adhesion strength of the coating. In conclusion, the use of an NiCrAlY bond coat is an effective method of improving the adhesion properties of thermal sprayed Fe coatings on Al substrates.

Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels (11 wt% 크롬이 함유된 Ti 첨가 페라이트스테인리스강의 입계부식에 미치는 규소의 영향)

  • Hyun, Youngmin;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.265-273
    • /
    • 2013
  • Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than $650^{\circ}C$ and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy.