• Title/Summary/Keyword: EAF dust recycling

Search Result 34, Processing Time 0.028 seconds

Behavior of Reduction and Carburization of EAF Dust and Mill Scale (전기로 분진과 압연 Scale의 환원 및 탄화거동)

  • Hwang Ho-Sun;Chung Uoo-Chang;Chung Won-Sub;Chung Won-Bae
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.50-56
    • /
    • 2003
  • To be recycled iron and heat source in EAF, EAF dust and mill scale generated from steelmaking plant should be made to iron carbide. Behavior of reduction and carburization in EAF dust and mill scale is studied to get fundamental data. EAF dust and mill scale are carburized at $650^{\circ}C$ by 100% CO gas. The carbon content of iron carbide(about 9 wt,% C) is higher than that of cementite without free carbon. The 1.2 times of calculated carbon content is suitable for reduction of EAF dust. The reduction temperature is appropriate to $900^{\circ}C$ in EAF dust and $1000^{\circ}C$ in mill scale. The carburization rate of mill scale are faster than those of EAF dust. The composition of super iron carbide is almost $Fe_2$C.

Recycling Industries of Urban mine Resources in Taiwan (대만(臺灣)의 도시광산(都市鑛山) 재자원화산업(再資源化産業))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.23-35
    • /
    • 2011
  • In order to review the recycling status of urban mine resources in Taiwan, background and history of recycling industries, system of the recovery fund management committee(RFMC), copper recycling with non-ferrous metals, recycling of ELV(end of life vehicles) and recycling of EAF dust were surveyed. Taiwan is a leading country of the world in the metal consumption per capita. Therefore, a lot of waste metals were generated. In other words, urban mine resources are abundant in Taiwan and have some advantages in recycling. There are more than thou-sand recycling plants in Taiwan. Half of them are non-ferrous metal recyclers.

A Study of the Research Trends and the Material flow on the Unrecycled Materials in Korea - The Current Situation of Recycling Technology for Waste Resources in Korea(2) - (국내(國內) 미이용자원(未利用資源)을 위한 회수(回收) 연구동향(硏究動向) 및 물질(物質)흐름 - 국내자원(國內資源)의 유효이용(有效利用)을 위한 처리(處理) 및 회수기술(回收技術) 동향조사(動向調査)(2) -)

  • Oh, Jae-Hyun;Kim, Mi-Sung;Shin, Hee-Duck;Min, Ji-Won
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.63-76
    • /
    • 2007
  • Typical examples as unrecycled materials in Korea were Zinc from the electric arc furnace dust (EAF Dust), and Moiybdenium and Vanadium from the desulfurizing spent catalyst of petrochemical industries. In the otherwise, though recovery of valuable metals from the waste electronic scrap such as printed circuit boards (PCBs) and platinum group metals (PGM) from the waste automobile catalyst have been interesting issues, it is difficult to collect the exact informations or statistics on their material flow system. In this article, The current domestic research trends for unrecycled or less recycled materials have been reviewed, and material flow and recycling technologies on the desulfurizing spent catalyst were surveyed.

Recycling of EAF Dust by Semi-continuous High Kinetic Process

  • Zoz, H.;Kaupp, G.;Ren, H.;Goepel, K.;Naimi-Jamal, M. R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.491-492
    • /
    • 2006
  • The horizontal high energy rotor ball mill ($Simoloyer^{(R)}$) is used to break and activate dry solids. It is used for dry-milling and in the vertical mount for wet-milling in leaching processes. Technical electric arc furnace (EAF) dust with high contents of zinc oxide, zinc ferrite and magnetite is efficiently separated by ambient temperature leaching. The process shows promise for industrial application

  • PDF

The Optimal Composition of Cold Bonded Pellet for Recycling EAF Dust Directly to the Furnace

  • Lee, Kwang-Keun;Kim, Tai-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.370-374
    • /
    • 2001
  • The degree of iron recovery from dust agglomerates was investigated experimentally to determine the optimum mixing ratio of coke in cold bonded pellet(CBP) which is fed into electric arc furnace(EAE) in the minimill plant. From the XRD analysis for EAF dust, magnetite(Fe$_3$O$_4$) and franklinite(ZnFe$_2$O$_4$) was identified as major components. Maximum iron recovery was obtained for the solid carbon content of approximately 18 weight percent. From plant trials of CBP composed of this optimal mixing condition, it was observed that electric power consumption and sulfur content increased with increasing the quantity of CBP.

  • PDF

Study on the Synchronous Recycling of EAF Dust and Waste PVC (폐PVC와 전기로 제강분진의 동시재활용을 위한 기초연구)

  • Lee GyeSeung;Song YuungJun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.47-56
    • /
    • 2003
  • PVC(polyvinyl chloride) powder were mixed with EAF(Electric Arc Furnace) dust and made as pellets. In order to recover the hydrochloride emitted from pyrolysis of PVC and the valuable metals in dust through making chlorides, pellets were roasted at $300 ^{\circ}C$ and investigated about the generation of chlorides. Two dust samples were collected at I steel making Co. and P Co. (called I dust and P dust respectively), which were mainly composed of zincite and franklinite. It was confirmed that about 50% of Zn in I dust and 48% of Zn in P dust compose zincite. The emission of HCl gas was completed in 15 min at 30$0^{\circ}C$ and the HCl mostly reacted with dust and made chlorides under 20% PVC mixed ratio. Because the reaction of HCl with zincite was faster than with franklinit, when generation and volatilization of ferric chloride is not allowed, the equivalent PVC powder mixed ratio in pellet depended on the amount of zincite in dust.

Leaching and stabilization of the heavy metals with pH in EAF dust-clay system (EAF 더스트-점토계의 중금속 용출 및 안정화에 미치는 pH의 영향)

  • Lee, Jee-Young;Lee, Ki-Gang;Kim, Yoo-Taek;Kang, Seung-Gu;Kim, Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.88-93
    • /
    • 2006
  • To recycle the electric arc furnace (EAF) dust as a ceramic raw materials, the leaching concentrations of heavy metals (Zn, Pb, Cr, Cd) were analysed with various pH and mixing ratios for EAF dust and EAF dust-clay mixtures. The evaporation amounts of the some heavy metals were evaluated by measuring their total concentrations in the sintered bodies of EAF dust-clay mixtures with various mixing ratio and sintering temperature. Toxicity characteristic leaching procedure (TCLP) test was conducted for evaluating the chemical stabilities of the heavy metal elements. Leaching concentrations of heavy metal ions shows minimum leaching concentration at the pH 10. Evaporation amount of heavy metals in the sintered bodies were evaluated for the mixtures of pH 10 depenidng on mixing ratio and sintering temperature. Evaporation of heavy metal components were increased with increasing the sintering temperature and contents of the EAF dust. The evaporation of the heavy metal components in EAF dust was effectively suppressed by increasing the clay content. The leaching concentrations of heavy metal components were decreased with increasing clay content and temperature.

Reduction Rate of Electric Arc Furnace Dust with Solid Carbon (전기로 더스트의 고체탄소에 의한 환원반응속도)

  • 박병구;이광학;김영홍;신형기
    • Resources Recycling
    • /
    • v.7 no.1
    • /
    • pp.34-40
    • /
    • 1998
  • This shdy was invcsligated on reduction rate of EAF dust wth solid carbon cantents. The rate equation for reduction ofEAF dust was obtaincd in the tempcrahlrc range cot 910-108O"C, and the ratio of zinc removal and metallization raho of ironoxides to thc reaction time was also analysed. From the XRD analysis for slag residues '||'&'||'er reaction, the cxistcncc DI themixture of Akemmite[Ca2MgSi2O.] and SiO, was identified.ed.

  • PDF

A Study on the Property of Combustion tower Dust in EAF Process (전기로 연소탑 하단에 포집되는 분진의 특성 연구)

  • Kim, Young-Hwan;Yoo, Jung-Min
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.48-53
    • /
    • 2017
  • During steelmaking on EAF, 1 ~ 2% of dust is generated. EAF Dust contains 20 ~ 30% of Zn and Fe. Dust contained in Off-gas is passed through combustion tower and cooling tower, and then captured in bag filter. About 15 wt.% of dust is dropped at the bottom of Combustion tower by its specific gravity, which was also carried out to recycle company with more higher charge than Bag filter dust. This study is focused on the combustion tower dust, and seperation as a function of operation period and particle size. As a result, Zn and Fe content of dust is more affected by size factor than operation period.