• Title/Summary/Keyword: E2 and E1cb Mechanism

Search Result 8, Processing Time 0.026 seconds

Base-Promoted, Ketene-Forming Elimination Reactions. Mechanistic Borderline between E2 and E1cb Mechanisms

  • Pyun, Sang-Yong;Cho, Bong-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1017-1024
    • /
    • 2005
  • Elimination reactions of $XC_6H_4CH_2CO_2C_6H_3-2-Y-4-NO_2$ have been studied under various conditions. When X was moderately electron-withdrawing, Y = H, and base-solvent was $R_2$NH-MeCN, the reaction proceeded by the E2 mechanism via an E1cb-like transition state. Concave downward curve was noted in the Hammett plots. When X = 4-$NO_2$, Y = Cl, $CF_3,\;NO_2$, and the base-solvent was ${R_2NH/R_2NH_2}^+$ in 70 mol % MeCN(aq), the reaction proceeded by the E2 mechanism. The mechanism changed to a competing E2 and E1cb when X = 4-$NO_2$ and Y = H, MeO, and to the E1cb when X = 2,4-($NO_2)_2$, and Y = $NO_2$. From these results, a plausible pathway of the change of the mechanism from E2 to the E1cb extreme is proposed.

Eliminations from (E)-2,4-Dinitrobenzaldehyde O-Aryloximes Promoted by R3N/R3NH+ in 70 mol% MeCN(aq). Effects of Leaving Group and Base-Solvent on the Nitrile-Forming Transition-State

  • Cho, Bong Rae;Pyun, Sang Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1030-1034
    • /
    • 2013
  • Elimination reactions of $(E)-2,4-(NO_2)_2C_6H_2CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by $R_3N/R_3NH^+$ in 70 mol % MeCN(aq) have been studied kinetically. The reactions are second-order and exhibit Br$\ddot{o}$nsted ${\beta}$ = 0.80-0.84 and ${\mid}{\beta}_{lg}{\mid}$ = 0.39-0.42, respectively. For all leaving groups and bases employed in this study, the ${\beta}$ and ${\mid}{\beta}_{lg}{\mid}$ values remained almost the same. The results can be described by a negligible $p_{xy}$ interaction coefficient, $p_{xy}={\partial}{\beta}/pK_{lg}={\partial}{\beta}_{lg}/pK_{BH}{\approx}0$, which describes the interaction between the base catalyst and the leaving group. The negligible pxy interaction coefficient is consistent with the $(E1cb)_{irr}$ mechanism. Change of the base-solvent system from $R_3N$/MeCN to $R_3N/R_3NH^+$-70 mol % MeCN(aq) changed the reaction mechanism from E2 to $(E1cb)_{irr}$. Noteworthy was the relative insensitivity of the transition state structure to the reaction mechanism change.

Elimination Reactions of Aryl Furylacetates Promoted by R2NH-R2NH2 + in 70 mol% MeCN(aq). Effects of β-Aryl on the Ketene-Forming Transition-State

  • Pyun, Sang Yong;Kim, Ju Chang;Cho, Bong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2143-2147
    • /
    • 2014
  • Ketene-forming elimination from 2-X-4-nitrophenyl furylacetates (1a-d) promoted by $R_2NH-R_2NH_2{^+}$ in 70 mol % MeCN(aq) has been studied kinetically. When X = Cl and $NO_2$, the reactions exhibited second-order kinetics as well as Br$\ddot{o}$nsted ${\beta}$ = 0.37-0.54 and $|{\beta}_{lg}|$ = 0.31-0.45. The Br$\ddot{o}$nsted ${\beta}$ decreased with a poorer leaving group and $|{\beta}_{lg}|$ increased with a weaker base. The results are consistent with an E2 mechanism. When the leaving group was changed to a poorer one [X= H (1a) and $OCH_3$ (1b)], the reaction mechanism changed to the competing E2 and E1cb mechanisms. A further change to the E1cb mechanism was realized for the reaction of 1a with $i-Pr_2NH/i-Pr_2NH_2{^+}$ in 70 mol % MeCN-30 mol % $D_2O$. By comparing the kinetic results in this study with the existing data for $ArCH_2C(O)OC_6H_3-2-X-4-NO_2$, the effect of the ${\beta}$-aryl group on the ketene-forming elimination was assessed.

Smile Rearrangement of Herbicidal Flazasulfuron (제초성 Flazasulfuron의 Smile 자리옮김 반응)

  • Lee, Gwnag-Jae;Kim, Yong-Jip;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.70-76
    • /
    • 1996
  • A series of the herbicidal pyridylsulfonyl areas, none substitutent, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(2-pyridylsulfonyl) urea, 3 and 3-trifluoromethyl substitutent, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(3-trifluoromethyl-2-pyridylsulfonyl) urea, 5(Flazasulfuron) were synthesizied and the rate of hydrolysis of their has been studied in 25%(v/v) aqueous dioxane at $45^{\circ}C$. From the results of solvent effect($m{\ll}1,\;n{\ll}3\;&\;{\mid}m{\mid}{\ll}{\mid}{\ell}{\mid}$), thermodynamic parameter (${\Delta}S^{\neq}=0.54{\sim}\;-2.19\;e.u.\;&\;{\Delta}H^{\neq}=0.025\;Kcal.mol.^{-1}$), hydrolysis product analysis, $pK_a$ constant(3: 4.9 & 5: lit.4.6) and the rate equation, a marked difference in the kinetics of the reaction of 3 and 5(Flazasulfuron) was observed. It may be concluded that the hydrolysis of 5 proceeds through the $A-S_N2Ar$ reaction via conjugate acid$(5H^+)$ below pH 7.0, whereas, above pH 9.0, the hydrolysis proceeds through irreversibly $(E_1)_{anion}$ and reversibly $(E_1CB)_R$ mechanism via conjugate base(CB), respectively. But in case of 5, $A-S_N2Ar,\;(E_1)anion\;and\;(E_1CB)_R$ mechanism involved Smile rearrangement. The mate of rearrangement of 5 to a 3-trifluoromethyl-2-pyridylpyrimidinyl urea(PPU) in acid and 3-trifluoromethyl-2-pyridyl-4.6-dimethoxypyridinyl amine (PPA) in base was increased about 3.5 times by the introduction of trifluoromethyl group in the 3-position on the 2-pyridyl ring. From the basis of these findings, a possible mechanism for the hydrolysis of 5 was proposed and discussed.

  • PDF

Theoretical Studies on Gas-Phase Reactions of Negative Ions with Alkyl Nitrites

  • Park, Hyeong Yeon;Kim, Chan Gyeong;Lee, Bon Su;Lee, Hae Hwang;Lee, Ik Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.823-827
    • /
    • 2000
  • Gas-Phase reactions of methyl and ethyl nitrites with anionic nucleophiles of SH-, F- and OH- are investigated theoretically at the MP2/6-311+G* level. The SN2 processes are all highly exothermic and proceed with a typ-icaI double-weIl reaction coordinate profile. The elimination reactions of methyl nitrite with SH- and F- are double-well energy surface processes,with stabilizedproduct complexes of NO-...H2S and NO-...HF, pro-ceeding by an E1 cb-like E2 mechanism. The $\beta-elimination$ of ethyl nitrite is an E2 type process. The $\alpha-elimi-nation$ reactions of methyl and ethyl nitrites with OH- have triple-well energy profiles of Elcb pathway with an $\alpha-carbanion$ intermediate which is stabilized bythe vicinal $nc\alpha-{\sigma}*o-N$ charge transfer interactions. CompIex-ation ofmethyl carbanion with HF seems to provide a stable intermediate within a triple-well energy profile of El cb channel in the reaction of F- with methyl nitrite.

Kinetics and Hydrolysis Mechanism of Herbicidal N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide Derivatives (제초성, N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-치환(Z)-6-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide 유도체의 가수분해 반응 메카니즘)

  • Lee, Chan-Bog;Ryu, Jae-Wook;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.455-462
    • /
    • 1995
  • The new six herbicidal N-[(pyrimidin-2-yl)aminocarbonyl]-2-substituted-6-(1-hydroxy-2-fluoroethyl)benzenesulfonamide derivatives(S) were synthesized and rate constants for the hydrolysis of thier in the range of pH $1.0{\sim}10.0$ have been studied in 15%(v/v) aqueous acetonitrile solution at $45^{\circ}C$. From the basis of the results, pH-effect, solvent effect, ortho-substituent effect, thermodynamic parameters(${\Delta}H^{\neq}$ & ${\Delta}S^{\neq}$), pKa constant(4.80), rate equation, analysis of hydrolysis products(2-(1-hydroxy-2-fluoroethyl)benzenesulfonamide & 4,6-dimethoxyaminopyrimidine), it may be concluded that the general acid catalyzed hydrolysis through $A-S_E2$ mechanism and specific acid catalyzed hydrolysis through A-2 type(or $A_{AC}2$) mechanism proceeds via conjugate acid($SH^+$) and tetrahedral intermediate(I) below pH 8.0, whereas, above pH 9.0, the general base catalyzed hydrolysis by water molecules(B) through $(E_1)_{anion}$ mechanism proceeds via conjugate base(CB). In the range between $pH\;7.0{\sim}pH\;9.0$, these two reactions occur competitively.

  • PDF

Elimination Reactions of (E)-2,4,6-Trinitrobenzaldehyde O-Aryloximes Promoted by R3N/R3NH+ in 70 mol% MeCN(aq). Effect of β-Aryl Group the Nitrile-Forming Transition-State

  • Pyun, Sang-Yong;Byun, Woong-Sub;Cho, Bong-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1921-1924
    • /
    • 2011
  • Nitrile-forming eliminations from $(E)-2,4,6-(NO_2)_3C_6H_2CH=NOC_6H_4-2-X-4-NO_2$ (1) promoted by $R_3NH/R_3NH^+$ in 70 mol % MeCN(aq) have been studied kinetically. When X = $NO_2$, the reactions exhibited second-order kinetics as well as Br$\"{o}$nsted ${\beta}$ = 0.63 and ${\mid}{\beta}_{lg}{\mid}$ = 0.34-0.46, and an E2 mechanism is evident. As the leaving group was made poorer (X = H, Cl, and $CF_3$), Br$\"{o}$nsted ${\beta}$ value increased from 0.63 to 0.85-0.89 without much change in the ${\mid}{\beta}_{lg}{\mid}$ value E2, indicating that structure of the transition state changed to an E1cb-like with extensive $C_{\beta}-H$ bond cleavage, significant negative charge development at the ${\beta}$-carbon, and limited $C_{\alpha}$-OAr bond cleavage.

Kinetics and Mechanism of the Hydrolysis of Phenyl N-Benzenesulfonylchloroformimidate Derivatives (Phenyl N-Benzenesulfonylchloroformimidate 誘導體의 加水分解 反應메카니즘과 反應速度論的 硏究)

  • Nack-Do Sung;Ki-Sung Kwon;Tae-Rin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.328-334
    • /
    • 1984
  • A series of phenyl N-benzenesulfonylchloroformimidate derivatives (p-H, p-Cl, p-CH3 & p-OCH3) were prepared and the hydrolysis of these compounds were studied kinetically at various pH by UV spectrophotometry in 1 ; 4 dioxane-water at $25^{\circ}C$. Hammett ${\rho}$ values measured at pH 5.0 (${\rho}$ = -0.45) and pH 10.0 (${\rho}$ = 0.40) indicate that the reaction proceeds via an azocarbonium ion intermediate in the acidic medium, whereas, it involves direct attack by hydroxide ion on the azomethine carbon atom occurs under the basic medium. The formation of stabilized azocarbonium ion species at pH 5.0 is also consistent with the large solvent effect(m = 1.3-1.5 & n = 5.0-5.5). On the basis of these findings, we may concluded that the hydrolysis of phenyl N-benzenesulfonylchloroformimidate derivatives proceeds by $SN_1$ below pH 8.0, however, above pH 10.0, the hydrolysis proceeds through $SN_2$ and in the range of pH 8.0-10.0, these two reactions occur competitively.

  • PDF