• Title/Summary/Keyword: E1 pulse

Search Result 334, Processing Time 0.049 seconds

Characteristics of Unsteady Flows in a Semi-Induction System by a Variable Volume Helmholtz Resonator (가변 체적 헬름홀츠 공진기에 의한 유사 흡기 시스템의 비정상 유동특성)

  • Kang, K.E.;Kim, K.H.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.57-62
    • /
    • 2009
  • Unsteady flows in a semi-induction system was investigated to verify their characteristics. A semi-induction system was designed and made to verify the Sow characteristics in an intake system. To attain an intact wave of an intake pulse, a single semi-intake system was adopted as a test rig. The system consists of an intake pipe and a rotary valve as a pulse generator, and a variable volume Helmholtz resonator. The variable volume Helmholtz resonator was mounted in the intake pipe to enhance a breathing capacity and engine performance. The phase and amplitude of the pulsating flow in an unsteady flow system were found to affect the charging capacity significantly. The behavior of pressure wave, their phase and amplitude were investigated in various regions. Some of the results obtained from experiments were described.

  • PDF

Fabrication of 1.2kV/120kA Reverse Switched-on Dynistor for Pulse power purpose (1.2kV/120kA급 펄스파워용 역점호 Dynistor 제작)

  • Kim, S.C.;Kim, E.D.;Park, J.M.;Kim, N.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1533-1535
    • /
    • 2000
  • The design and fabrication technologies of pulse power reversely switched-on dynistor have been developed 1200V/120kA pulse power reversely switched-on dynistor device have been designed by analytically and numerically using commercial modeling S/W The important characteristics of reversely switched-on dynistors are breakover voltage $V_{BO}$, commutative peak voltage before steady state $V_m$, on-state voltage in steady state $V_o$, turn-off time $t_q$, dV/dt capability.

  • PDF

Numerical Modeling of Plasma Characteristics of ICP System with a Pulsed dc Bias (수치모델을 이용한 pulsed dc bias ICP장치의 플라즈마 특성 해석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.154-158
    • /
    • 2010
  • Numerical analysis is done to investigate the effects of pulse bias on the plasma processing characteristics like ion doping and ion nitriding by using fluid dynamic code with a 2D axi-symmetric model. For 10 mTorr of Ar plasma, -1 kV of pulse bias was simulated. Maximum sheath thickness was around 20 mm based on the electric potential profile. The peak electron temperature was about 20 eV, but did not affect the averaged plasma characteristics of the whole chamber. Maximum ion current density incident on the substrate was 200 $A/m^2$ at the center, but was decreased down to 1/10th at radius 100 mm, giving poor radial uniformity.

Electrochemical Behavior and Differential Pulse Polarographic Determination of Piperacillin Sodium

  • Hahn, Young-hee;Son, Ean-ji
    • Archives of Pharmacal Research
    • /
    • v.23 no.3
    • /
    • pp.197-201
    • /
    • 2000
  • In an aqueous piperacillin sodium solution, a well-defined single wave or single peak was observed by direct current(DC) polarography or differential pulse polarography(DPP). The peak potential change per pH unit was -54 mV in the phosphate buffer at $18^{\circ}C$, which indicated that protons were involved in the electrochemical reduction of the 2,3-dioxopiperazine moiety of piperacillin sodium with a $H^{+}e^{-}$ ratio of one. Using a phosphate buffer of pH 4.3, the $1.0{times}10^{-7}$ M piperacillin sodium single peak could be determined by DPP with relative standard deviation of 1.6 %(n=3). Piperacillin sodium could be analyzed with-out interference from penicillin G-potassium, which enabled the employment of DPP as a fast and simple technique for monitoring the synthetic process of the antibiotic.

  • PDF

Issues in Building Large RSFQ Circuits (대형 RSFQ 회로의 구성)

  • Kang, J.H.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Practical implementation of the SFQ technology in most application requires more than single-chip-level circuit complexity. Multiple chips have to be integrated with a technology that is reliable at cryogenic temperatures and supports an inter-chip data transmission speed of tens of GHz. In this work, we have studied two basic issues in building large RSFQ circuits. The first is the reliable inter-chip SFQ pulse transfer technique using Multi-Chip-Module (MCM) technology. By noting that the energy contained in an SFQ pulse is less than an attojoule, it is not very surprising that the direct transmission of a single SFQ pulse through MCM solder bump connectors can be difficult and an innovative technique is needed. The second is the recycling of the bias currents. Since RSFQ circuits are dc current biased the large RSFQ circuits need serial biasing to reduce the total amount of current input to the circuit.

  • PDF

Pulsed laser welding of Zr-1%Nb alloy

  • Elkin, Maxim A.;Kiselev, Alexey S.;Slobodyan, Mikhail S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.776-783
    • /
    • 2019
  • Laser welding is usually a more effective method than electron-beam one since a vacuum chamber is not required. It is important for joining Zr-1%Nb (E110) alloy in a manufacturing process of nuclear fuel rods. In the present work, effect of energy parameters of pulsed laser welding on properties of butt joints of sheets with a thickness of 0.5 mm is investigated. The most efficient combination has been found (8-11 J pulse energy, 10-14 ms pulse duration, 780-810 W peak pulse power, 3 Hz pulse frequency, 1.12 mm/s welding speed). The results show that ultimate strength under static loading can not be used as a quality criterion for zirconium alloys welds. Increased shielding gas flow rate does not allow to protect weld metal totally and contributes to defect formation without using special nozzles. Several types of imperfections of the welds have been found, but the major problem is branching microcracks on the surface of the welds. It is difficult to identify the cause of their appearance without additional research on improving the welding zone protection (gas composition and flow rate as well as nozzle configuration) and studying the hydrogen content in the welds.

Effects of Interference Signals on the Performance of EFTS (간섭신호가 EFTS의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 2014
  • A radio communication system has interference caused by other radio transmitters operated in co-channel or adjacent channels. Therefore technical specifications are made by considering and investigating the effects of interference between the new system and present systems when the new system will be started to serve in the near future. FTS is used for preventing an abnormal mission and guaranteeing public protection. Recently the next generation FTS's are researched to reinforce the security and to increase the operating capability of simultaneous use. EFTS known as one of the next generation FTS's is suitable for such purposes. In this paper the effects of interference signals on the performance of EFTS are investigated. Noncoherent DPSK and noncoherent CPFSK are considered for the modulation method of EFTS and a FMCW and a pulse RADAR considered as a interferer. The power of FMCW is 20.3dB lower than the power of EFTS and the power of pulse RADAR is 19.1dB lower than that of EFTS. Simulation results show that FMCW interferer reduce $E_b/N_o$ of about 1dB and $E_b/N_o$ of EFTS deteriorates about 0.5dB due to interference signals generated from pulse RADAR.

Development of high repetition rate and high power pulsed Nd:YAG laser power supply using ZCS resonant converter (ZCS공진형 컨버터를 적용한 고반복 대출력 펄스형 Nd:YAG 레이저 전원장치 개발)

  • Joe, K.Y.;Kim, E.S.;Byun, Y.B.;Kim, H.J.;Park, J.M.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.514-517
    • /
    • 1996
  • Zero current switching(ZCS) series resonant converter is used to control laser power density in a pulsed Nd:YAG laser power supply. The high power and high repetition rate paused Nd:YAG laser is designed and fabricated to control current pulse width and pulse repetition rate in the double elliptical laser oscillator. In order to find out operational characteristics of pulsed Nd:YAG laser, the electrical properties of driving power supply and laser output power are investigated and experimented by changing of the current pulse width from 200uS to 350uS(step 50uS) and pulse repetition rate range of 500pps(pulse per second) to 1150pps. From that result, we obtaind maximum efficiency of 1.83% and maximum laser output or 220W at the condition of 350 uS and 1150pps with one Nd:YAG rod), and obtained that of more than 400W with two laser head connecting series.

  • PDF

A Study on Digital Frequency Discriminator (DFD) Operating in E, F, and G Band (E, F, G 밴드 디지털 주파수 측정기에 대한 연구)

  • Yu, Yun-Seop;Kim, Eun-Sil;Lee, Chan-Ho;Ahn, Hyeon-Kwan;Yang, Hong-Sun;Lim, Joong-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.149-150
    • /
    • 2006
  • In this paper, design, simulation, fabrication method, and measured results of a digital frequency discriminator(DFD) operating in E, F, and G band are introduced. We describe the direct conversion scheme(DCS) with microwave integrated-circuit(MIC) developed for the small-area and high-speed system. When the input signal is the pulse with a pulse width of 100 ns, accuracy of frequencies measured by the DFD has 1.335 MHz RMS at no noise and 2.64 MHz RMS at signal-to-noise(S/N) ratio within 3 dB in E, F, and G band, which nearly satisfy the specification of 2.5 MHz RMS.

  • PDF

Sintering Effect on Clamping Characteristics and Pulse Aging Behavior of ESD-Sensitive V2O5/Mn3O4/Nb2O5 Codoped Zinc Oxide Varistors

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.308-311
    • /
    • 2015
  • V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were sintered at a temperature range as low as 875~950℃. The voltage clamping characteristics of V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were investigated at a pulse current range of 1~50 A. The sintering temperature had a significant effect on clamp voltage ratio, which exhibits surge protection capabilities. The varistor ceramics sintered at 875℃ exhibited the best clamping characteristics, in which the clamp voltage ratio was 2.69 at a pulse current of 50 A. The varistor ceramics sintered at 900℃ exhibited the highest electrical stability, where = 3,824 V/cm (initial 3,909 V/cm), and E1 mA/cm2 = 27 (initial 39) after application of a pulse current of 100 A.