• Title/Summary/Keyword: E. coli K1 (E44)

Search Result 168, Processing Time 0.025 seconds

Expression and Optimum Production of Cyclodextrin Glucanotransferase Gene of Paenibacillus sp. JB-13 in E. coli (Paenibacillus sp. JB-13 Cyclodextrin Glucanotransferase 유전자의 E. coli 에서의 발현 및 최적 생산)

  • Kim, Hae-Yun;Lee, Sang-Hyeon;Kim, Hae-Nam;Min, Bok-Kee;Baik, Hyung-Suk;Jun, Hong-Ki
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.74-79
    • /
    • 2008
  • The purpose of this study is to clone cgt gene from Paenibacillus sp. JB-13 and to overexpress the protein in E. coli. For this purpose, the cgt gene was amplified from Paenibacillus sp. JB-13 genomic DNA by PCR using degenerate oligonucleotide primers. The sequence analysis results showed that the cgt gene from Paenibacillus sp. JB-13 has 98% homology with the cgt gene of Bacillus sp. To overexpress the protein, the cgt gene was cloned into pEXP7 expression vector and transformed into E. coli. The production of CGTase by recombinant E. coli was optimized under following conditions: 0.5% glucose, 3.0% polypeptone, 0.3% $K_2HPO_4$, 0.5% NaCl, and 7.0 of initial pH, 2.0% of inoculum, $37^{\circ}C$ of culture temperature for 14 hr. And the optimal agitation was found at 0.1 vvm. The synthesis of 2-O-${\alpha}$-D-Glucopyranosyl L-Ascorbic acid (AA-2G) using the CGTase expressed in E. coli was identified as AA-2G by HPLC and HPLC confirmed that treating AA-2G made by cloned CGTase with ${\alpha}$-glucosidase substantially produced AA and glucose.

Regulatory Effect of Spray-Dried Lactiplantibacillus plantarum K79 on the Activation of Vasodilatory Factors and Inflammatory Responses

  • Ki Hwan Kim;Yongjin Hwang;Seok-Seong Kang
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.216-224
    • /
    • 2024
  • The reduction of nitric oxide (NO) bioavailability in the endothelium induces endothelial dysfunction, contributing to the development of hypertension. Although Lactobacillus consumption decreases blood pressure, intracellular signaling pathways related to hypertension have not been well elucidated. Thus, this study examined the effect of spray-dried Lactiplantibacillus plantarum K79 (LpK79) on NO production, intracellular signaling pathways, and inflammatory responses related to vascular function and hypertension. NO production was assessed in human umbilical vein endothelial cells (HUVECs) treated with LpK79. Endothelial NO synthase (eNOS) and intracellular signaling molecules were determined using Western blot analysis. LpK79 dose-dependently increased NO production and activated eNOS via the phosphoinositide 3-kinase/Akt signaling pathway HUVECs. Moreover, LpK79 mitigated the activation of crucial factors pivotal for vascular contraction in smooth muscle cells, such as phospholipase Cγ, myosin phosphatase target subunit 1, and Rho-associated kinase 2. When HUVECs were treated with LpL79 in the presence of Escherichia coli lipopolysaccharide (LPS), LpK79 effectively suppressed mRNA and protein expression of pro-inflammatory mediators induced by E. coli LPS. These results suggest that LpK79 provided a beneficial effect on the regulation of vascular endothelial function.

Identification of an antimicrobial peptide from human methionine sulfoxide reductase B3

  • Kim, Yong-Joon;Kwak, Geun-Hee;Lee, Chu-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.669-673
    • /
    • 2011
  • Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic ${\alpha}$-helical segment that contains 4 cysteine residues. The potential ${\alpha}$-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.

Antimicrobial Resistance and Virulence Genes Presence in Escherichia coli Strains Isolated from Gomso Bay, Korea

  • Park, Kwon-Sam
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • In total, 131 Escherichia coli isolates from surface seawater of the Gomso Bay, of Korea, were analyzed for their susceptibility to 22 different antimicrobials and for genes associated with antimicrobial resistance and virulence. According to the disk diffusion susceptibility test, the resistance to tetracycline was most prevalent (33.6%), followed by that to ampicillin (22.1%), ticarcillin (22.1%), and trimethoprim (16.8%). More than 46.6% of the isolates were resistant to at least one antimicrobial, and 22.9% were resistant to three or more classes of antimicrobials; these were consequently defined as multidrug resistant. We further found that 29 ampicillin-resistant isolates possessed genes encoding TEM-type (93.1%) and SHV-type (6.9%) ${\beta}$-lactamases. Among the 44 tetracycline-resistant isolates, tetA and tetC were found in 35 (79.5%) and 19 (43.2%), respectively, whereas tetB was detected in only three isolates (6.8%). With regard to virulence genes, merely 0.8% (n = 1) and 2.3% (n = 3) of the isolates were positive for the enteroaggregative E. coli-associated plasmid (pCVD432) gene and the enteropathogenic E. coli-specific attaching and effacing (eae) gene, respectively. Overall, these results not only provide novel insight into the necessity for seawater sanitation in Gomso Bay, but they help reduce the risk of contamination of antimicrobial-resistant bacteria.

An Analysis of Epidemiological Investigation Reports Regarding to Pathogenic E. coli Outbreaks in Korea from 2009 to 2010 (최근 2년간(2009-2010) 우리나라 병원성 대장균 식중독 역학조사 보고서 분석)

  • Lee, Jong-Kyung;Park, In-Hee;Yoon, Kisun;Kim, Hyun Jung;Cho, Joon-Il;Lee, Soon-Ho;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.366-374
    • /
    • 2012
  • Recently pathogenic E. coli is one of the main foodborne pathogens resulting in many patients in Korea. To understand the characteristics of pathogenic E. coli outbreaks in Korea, the epidemiological investigation reports of pathogenic E. coli outbreak in 2009 (41 reports) and in 2010 (27 reports) were collected in the web site of the Korea Centers for Disease Control and Prevention, reviewed and analysed in this study. The main places of the pathogenic E. coli outbreaks were food catering service area (64.8%) and restaurants (25.0%). The main type of the pathogens were EPEC (44.7%) and ETEC (34.2%). EAEC and EHEC was responsible for 10.5 and 9.2%, respectively. Eight of 68 outbreak cases were caused by more than 2 types of pathogenic E. coli which implicates the complicated contamination pathways of pathogenic E. coli. The incidence rate of pathogenic E. coli was $33.6{\pm}30.5%$ and the main symptoms were diarrhea, stomach ache, nausea, vomiting, and fever etc. The two identified food sources were identified as frozen hamburger pattie and squid-vegetable mixture. To improve the food source identification by epidemiological investigation, food poisoning notification to the agency should not be delayed, whole food items attributed the outbreak should be collected and detection method of the various pathogenic E. coli in food has to be improved. In conclusion, the characteristics between the EHEC outbreaks in the western countries and the EPEC or ETEC outbreaks in Korea needs to be distinguished to prepare food safety management plan. In addition, the development of the trace back system to find the contamination pathway with the improved detection method in food and systemic and cooperative support by the related agencies are necessary.

Optimization and High-level Expression of a Functional GST-tagged rHLT-B in Escherichia coli and GM1 Binding Ability of Purified rHLT-B

  • Ma Xingyuan;Zheng Wenyun;Wang Tianwen;Wei Dongzhi;Ma Yushu
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • The Escherichia coli heat-labile enterotoxin B subunit (HLT-B) is one of the most powerful mucosal immunogens and known mucosal adjuvants. However, the induction of high levels of HLT-B expression in E. coli has proven a difficult proposition. Therefore, in this study, the HLT-B gene was cloned from pathogenic E. coli and expressed as a fusion protein with GST (glutathion S-transferase) in E. coli BL2l (DE3), in an attempt to harvest a large quantity of soluble HLT-B. The culture conditions, including the culture media used, temperature, pH and the presence of lactose as an inducer, were all optimized in order to obtain an increase in the expression of soluble GST-rHLT-B. The biological activity of the purified rHLT-B was assayed in a series of GMI-ELISA experiments. The findings of these trials indicated that the yield of soluble recombinant GST-rHLT-B could be increased by up to 3-fold, as compared with that seen prior to the optimization, and that lactose was a more efficient alternative inducer than IPTG. The production of rHLT-B, at 92 % purity, reached an optimal level of 96 mg/l in a 3.7 L fermentor. The specific GM1 binding ability of the purified rHLT-B was determined to be almost identical to that of standard CTB.

The Study on Decomposition of Metal-working Fluids Against Microbes (미생물을 이용한 절삭유제의 부패성능 평가에 관한 연구)

  • Kim, Young-Wun;Hong, Kwang Min;Chung, Kunwo;Park, Chan-Jo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.350-355
    • /
    • 2006
  • Growth curves of microbes were examined to evaluate decomposition of metal-working fluids and decomposition properties of metal-working fluids were experimented using controled microbes such as E. coli and K. pnemoniae. According to the results of growth curve of microbes, the growth period depended on species of microbes, 2 h of E. coli, 3 h of K. pneumoniae, 4 h of P. aeruginosa and 3 h of P. oleovarans after incubation. The colony count of E. coli and K. pneumoniae controled to OD of 0.5 ranged from $4.4{\sim}10.0{\times}10^5CFU/mL$ and $1.8{\sim}9.5{\times}10^7CFU/mL$, respectively. The decomposition of metal-working fluids was excellently progressed in the range of pH 6~8 than below pH 4 and above pH 10. In the case of controled fluids to pH 6~8, the decomposition of the fluid containing ester group was more accelerated than that of the fluid containing ethylene glycol.

Molecular Cloning of a Cellulase Gene from Abalone Haliotis discus hannai and Its Expression in E coli

  • Park, Eun-Mi;Han, Yun-Hee;Park, In-Suk;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Woo-Jin;Lee, Sang-Jun;Kim, Young-Ok
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.108-112
    • /
    • 2007
  • A cellulase (endo-${\beta}$-1,4-D-glucanase(E.C.3.2.1.4)) was isolated from the hepatopancreas of abalone Haliotis discus hannai by EST analysis. The abalone cellulase named HdEG compassed 1977 bp, including 195 bp in the 5'untranslated region, 1680 bp in the open reading frame which encodes 560 amino acid residues, and 92 bp in the 3'-untranslated region. The C-terminal region of the HdEG showed 44-52% identity to the catalytic domains of glycoside hydrolase family 9 (GHF9)-cellulases from arthropods and bacteria. The recombinant cellulase, pEHdEG was produced in E. coli with being fused with C-terminal His-tag. The expressed protein showed a single band (~62 kDa) on Western blotting which was consistent with the value (61,878 Da) calculated from the DNA sequence.

  • PDF

Sterilization of Bacteria, Yeast, and Bacterial Endospores by Atmospheric-Pressure Cold Plasma using Helium and Oxygen

  • Lee Kye-Nam;Paek Kwang-Hyun;Ju Won-Tae;Lee Yeon-Hee
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.269-275
    • /
    • 2006
  • Atmospheric-pressure cold plasma (APCP) using helium/oxygen was developed and tested as a suitable sterilization method in a clinical environment. The sterilizing effect of this method is not due to UV light, which is known to be the major sterilization factor of APCP, but instead results from the action of reactive oxygen radicals. Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae deposited on a nitrocellulose filter membrane or Bacillus subtilis spores deposited on polypropylene plates were exposed to helium/oxygen plasma generated with AC input power at 10 kHz, 6 kV. After Plasma treatment, nitrocellulose filter membranes were overlaid on fresh solid media and CFUs were counted after incubation overnight. D-values were 18 sec for E. coli, 19 sec for S. aureus, 1 min 55 sec for S. cerevisiae, and 14 min for B. subtilis spores. D-values of bacteria and yeast were dependent on the initial inoculation concentration, while the D-value of B. subtilis spores showed no correlation. When treated cells were observed with a scanning electron microscope, E. coli was more heavily damaged than S. aureus, S. cevevisiae exhibited peeling, and B. subtilis spores exhibited shrunken morphology. Results showed that APCP using helium/oxygen has many advantages as a sterilization method, especially in a clinical environment with conditions such as stable temperature, unlimited sample size, and no harmful gas production.

Ex12 helper phage improves the quality of a phage-displayed antibody library by ameliorating the adverse effect of clonal variations

  • Choi, Hyo-Jung;Song, Suk-Yoon;Yoon, Jae-Bong;Liu, Li-Kun;Cho, Jae-Youl;Cha, Sang-Hoon
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.244-249
    • /
    • 2011
  • The quality of a phage-displayed antibody library deteriorates with clonal variations, which are caused by differentially expressed Escherichia coli antibody genes. Using the human Fab SP114 against the pyruvate dehydrogenase complex-E2 (PDCE2), we created four E. coli TOP10F' clones with a pCMTG phagemid encoding Fab-pIII (pCMTG-Fab), Fd ($V_H+C_{H1}$)-pIII (pCMTG-Fd), or light chain (L) (pCMTG-L), or the vector only (pCMTG-${\Delta}Fab$) to investigate the effect of clonal variations in a defined manner. Compared to the others, the E. coli clone with pCMTG-Fab was growth retarded in liquid culture, but efficiently produced phage progenies by Ex12 helper phage superinfection. Our results suggest that an antibody library must be cultured for a short duration before helper phage superinfection, and that the Ex12 helper phage helped to alleviate the detrimental effect of clonal variation, at least in part, by preferentially increasing functional phage antibodies during phage amplification.