Identification of an antimicrobial peptide from human methionine sulfoxide reductase B3 |
Kim, Yong-Joon
(Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
Kwak, Geun-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) Lee, Chu-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) Kim, Hwa-Young (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) |
1 | Makarova, O., Kamberov, E. and Margolis, B. (2000) Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970-972. |
2 | Kumar, R. A., Koc, A., Cerny, R. L. and Gladyshev, V. N. (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J. Biol. Chem. 277, 37527-37535. DOI ScienceOn |
3 | Kim, H. Y. and Gladyshev, V. N. (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329. DOI ScienceOn |
4 | Lee, B. C., Dikiy, A., Kim, H. Y. and Gladyshev, V. N. (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim. Biophys. Acta. 1790, 1471-1477. DOI ScienceOn |
5 | Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell 15, 1055-1064. |
6 | Fedders, H., Michalek, M., Grotzinger, J. and Leippe, M. (2008) An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem. J. 416, 65-75. DOI ScienceOn |
7 | Kim, H. Y. and Gladyshev, V. N. (2004) Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Biochem. Biophys. Res. Commun. 320, 1277-1283. DOI ScienceOn |
8 | Wang, G., Li, X. and Wang, Z. (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 37, D933-937. DOI ScienceOn |
9 | Krause, A., Sillard, R., Kleemeier, B., Kluver, E., Maronde, E., Conejo-Garcia, J. R., Forssmann, W. G., Schulz-Knappe, P., Nehls, M. C., Wattler, F., Wattler, S. and Adermann, K. (2003) Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Sci. 12, 143-152. DOI ScienceOn |
10 | Townes, C. L., Michailidis, G., Nile, C. J. and Hall, J. (2004) Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection. Infect. Immun. 72, 6987-6993. DOI ScienceOn |
11 | Maupetit, J., Derreumaux, P. and Tuffery, P. (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res. 37, W498-503. DOI ScienceOn |
12 | Andreu, D. and Rivas, L. (1998) Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433. DOI ScienceOn |
13 | Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250. DOI ScienceOn |
14 | Jung, H. H., Yang, S. T., Sim, J. Y., Lee, S., Lee, J. Y., Kim, H. H., Shin, S. Y. and Kim, J. I. (2010) Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles. BMB Rep. 43, 362-368. 과학기술학회마을 DOI ScienceOn |
15 | Zhu, W. L., Hahm, K. S. and Shin, S. Y. (2009) Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J. Pept. Sci. 15, 569-575. DOI ScienceOn |
16 | Kawaguchi, A., Suzuki, T., Kimura, T., Sakai, N., Ayabe, T., Sawa, H. and Hasegawa, H. (2010) Functional analysis of an alpha-helical antimicrobial peptide derived from a novel mouse defensin-like gene. Biochem. Biophys. Res. Commun. 398, 778-784. DOI ScienceOn |