Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.10.669

Identification of an antimicrobial peptide from human methionine sulfoxide reductase B3  

Kim, Yong-Joon (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
Kwak, Geun-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
Lee, Chu-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
Kim, Hwa-Young (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
Publication Information
BMB Reports / v.44, no.10, 2011 , pp. 669-673 More about this Journal
Abstract
Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic ${\alpha}$-helical segment that contains 4 cysteine residues. The potential ${\alpha}$-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.
Keywords
Antimicrobial peptide; Endoplasmic reticulum signal peptide; Methionine sulfoxide reductase; MsrB3;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Makarova, O., Kamberov, E. and Margolis, B. (2000) Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970-972.
2 Kumar, R. A., Koc, A., Cerny, R. L. and Gladyshev, V. N. (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J. Biol. Chem. 277, 37527-37535.   DOI   ScienceOn
3 Kim, H. Y. and Gladyshev, V. N. (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329.   DOI   ScienceOn
4 Lee, B. C., Dikiy, A., Kim, H. Y. and Gladyshev, V. N. (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim. Biophys. Acta. 1790, 1471-1477.   DOI   ScienceOn
5 Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell 15, 1055-1064.
6 Fedders, H., Michalek, M., Grotzinger, J. and Leippe, M. (2008) An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem. J. 416, 65-75.   DOI   ScienceOn
7 Kim, H. Y. and Gladyshev, V. N. (2004) Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Biochem. Biophys. Res. Commun. 320, 1277-1283.   DOI   ScienceOn
8 Wang, G., Li, X. and Wang, Z. (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 37, D933-937.   DOI   ScienceOn
9 Krause, A., Sillard, R., Kleemeier, B., Kluver, E., Maronde, E., Conejo-Garcia, J. R., Forssmann, W. G., Schulz-Knappe, P., Nehls, M. C., Wattler, F., Wattler, S. and Adermann, K. (2003) Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Sci. 12, 143-152.   DOI   ScienceOn
10 Townes, C. L., Michailidis, G., Nile, C. J. and Hall, J. (2004) Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection. Infect. Immun. 72, 6987-6993.   DOI   ScienceOn
11 Maupetit, J., Derreumaux, P. and Tuffery, P. (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res. 37, W498-503.   DOI   ScienceOn
12 Andreu, D. and Rivas, L. (1998) Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433.   DOI   ScienceOn
13 Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250.   DOI   ScienceOn
14 Jung, H. H., Yang, S. T., Sim, J. Y., Lee, S., Lee, J. Y., Kim, H. H., Shin, S. Y. and Kim, J. I. (2010) Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles. BMB Rep. 43, 362-368.   과학기술학회마을   DOI   ScienceOn
15 Zhu, W. L., Hahm, K. S. and Shin, S. Y. (2009) Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J. Pept. Sci. 15, 569-575.   DOI   ScienceOn
16 Kawaguchi, A., Suzuki, T., Kimura, T., Sakai, N., Ayabe, T., Sawa, H. and Hasegawa, H. (2010) Functional analysis of an alpha-helical antimicrobial peptide derived from a novel mouse defensin-like gene. Biochem. Biophys. Res. Commun. 398, 778-784.   DOI   ScienceOn