• Title/Summary/Keyword: E-learning quality

Search Result 328, Processing Time 0.028 seconds

Association Rule Mining and Collaborative Filtering-Based Recommendation for Improving University Graduate Attributes

  • Sheta, Osama E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.339-345
    • /
    • 2022
  • Outcome-based education (OBE) is a tried-and-true teaching technique based on a set of predetermined goals. Program Educational Objectives (PEOs), Program Outcomes (POs), and Course Outcomes (COs) are the components of OBE. At the end of each year, the Program Outcomes are evaluated, and faculty members can submit many recommended measures which dependent on the relationship between the program outcomes and its courses outcomes to improve the quality of program and hence the overall educational program. When a vast number of courses are considered, bad actions may be proposed, resulting in unwanted and incorrect decisions. In this paper, a recommender system, using collaborative filtering and association rules algorithms, is proposed for predicting the best relationship between the program outcomes and its courses in order to improve the attributes of the graduates. First, a parallel algorithm is used for Collaborative Filtering on Data Model, which is designed to increase the efficiency of processing big data. Then, a parallel similar learning outcomes discovery method based on matrix correlation is proposed by mining association rules. As a case study, the proposed recommender system is applied to the Computer Information Systems program, College of Computer Sciences and Information Technology, Al-Baha University, Saudi Arabia for helping Program Quality Administration improving the quality of program outcomes. The obtained results revealed that the suggested recommender system provides more actions for boosting Graduate Attributes quality.

A method using artificial neural networks to morphologically assess mouse blastocyst quality

  • Matos, Felipe Delestro;Rocha, Jose Celso;Nogueira, Marcelo Fabio Gouveia
    • Journal of Animal Science and Technology
    • /
    • v.56 no.4
    • /
    • pp.15.1-15.10
    • /
    • 2014
  • Background: Morphologically classifying embryos is important for numerous laboratory techniques, which range from basic methods to methods for assisted reproduction. However, the standard method currently used for classification is subjective and depends on an embryologist's prior training. Thus, our work was aimed at developing software to classify morphological quality for blastocysts based on digital images. Methods: The developed methodology is suitable for the assistance of the embryologist on the task of analyzing blastocysts. The software uses artificial neural network techniques as a machine learning technique. These networks analyze both visual variables extracted from an image and biological features for an embryo. Results: After the training process the final accuracy of the system using this method was 95%. To aid the end-users in operating this system, we developed a graphical user interface that can be used to produce a quality assessment based on a previously trained artificial neural network. Conclusions: This process has a high potential for applicability because it can be adapted to additional species with greater economic appeal (human beings and cattle). Based on an objective assessment (without personal bias from the embryologist) and with high reproducibility between samples or different clinics and laboratories, this method will facilitate such classification in the future as an alternative practice for assessing embryo morphologies.

A study to Improve the Image Quality of Low-quality Public CCTV (저화질 공공 CCTV의 영상 화질 개선 방안 연구)

  • Young-Woo Kwon;Sung-hyun Baek;Bo-Soon Kim;Sung-Hoon Oh;Young-Jun Jeon;Seok-Chan Jeong
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.125-137
    • /
    • 2021
  • The number of CCTV installed in Korea is over 1.3 million, increasing by more than 15% annually. However, due to the limited budget compared to the installation demand, the infrastructure is composed of 500,000 pixel low-quality CCTV, and there is a limits on identification of objects in the video. Public CCTV has high utility in various fields such as crime prevention, traffic information collection (control), facility management, and fire prevention. Especially, since installed in high height, it works as its role in solving diverse crime and is in increasing trend. However, the current public CCTV field is operated with potential problems such as inability to identify due to environmental factors such as fog, snow, and rain, and the low-quality of collected images due to the installation of low-quality CCTV. Therefore, in this study, in order to remove the typical low-quality elements of public CCTV, the method of attenuating scattered light in the image caused by dust, water droplets, fog, etc and algorithm application method which uses deep-learning algorithm to improve input video into videos over quality over 4K are suggested.

Ordinary Life Plays as Musical Activities - Objectives and Methods (음악활동으로서의 일상생활놀이 - 교육목표 및 방법)

  • Rho, Joohee
    • Journal of Music and Human Behavior
    • /
    • v.2 no.1
    • /
    • pp.47-65
    • /
    • 2005
  • One of important goals for early childhood music learning program is to build a positive attitude toward music. Positive attitude toward music is a basic condition on effective music education for all ages of children including early childhood. Although scholars realize such importance of positive music attitude, much research for creating educational environment to foster a positive music attitude has not been performed. Edwin E. Gordon who found a music learning theory for early childhood emphasized the importance of enriched musical environment. Very young children should be provided best quality of music in an interactive way. Audie's important method of education is to provide young children with a variety of musical activities containing the materials in the ordinary life. Through this method, children accept music as close as friends who are always beside themselves, which naturally builds a solid foundation for audiation for children.

  • PDF

The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce (온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안)

  • Kim, Kitae;Oh, Wonseok;Lim, Geunwon;Cha, Eunwoo;Shin, Minyoung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-23
    • /
    • 2018
  • From the 21st century, various high-quality services have come up with the growth of the internet or 'Information and Communication Technologies'. Especially, the scale of E-commerce industry in which Amazon and E-bay are standing out is exploding in a large way. As E-commerce grows, Customers could get what they want to buy easily while comparing various products because more products have been registered at online shopping malls. However, a problem has arisen with the growth of E-commerce. As too many products have been registered, it has become difficult for customers to search what they really need in the flood of products. When customers search for desired products with a generalized keyword, too many products have come out as a result. On the contrary, few products have been searched if customers type in details of products because concrete product-attributes have been registered rarely. In this situation, recognizing texts in images automatically with a machine can be a solution. Because bulk of product details are written in catalogs as image format, most of product information are not searched with text inputs in the current text-based searching system. It means if information in images can be converted to text format, customers can search products with product-details, which make them shop more conveniently. There are various existing OCR(Optical Character Recognition) programs which can recognize texts in images. But existing OCR programs are hard to be applied to catalog because they have problems in recognizing texts in certain circumstances, like texts are not big enough or fonts are not consistent. Therefore, this research suggests the way to recognize keywords in catalog with the Deep Learning algorithm which is state of the art in image-recognition area from 2010s. Single Shot Multibox Detector(SSD), which is a credited model for object-detection performance, can be used with structures re-designed to take into account the difference of text from object. But there is an issue that SSD model needs a lot of labeled-train data to be trained, because of the characteristic of deep learning algorithms, that it should be trained by supervised-learning. To collect data, we can try labelling location and classification information to texts in catalog manually. But if data are collected manually, many problems would come up. Some keywords would be missed because human can make mistakes while labelling train data. And it becomes too time-consuming to collect train data considering the scale of data needed or costly if a lot of workers are hired to shorten the time. Furthermore, if some specific keywords are needed to be trained, searching images that have the words would be difficult, as well. To solve the data issue, this research developed a program which create train data automatically. This program can make images which have various keywords and pictures like catalog and save location-information of keywords at the same time. With this program, not only data can be collected efficiently, but also the performance of SSD model becomes better. The SSD model recorded 81.99% of recognition rate with 20,000 data created by the program. Moreover, this research had an efficiency test of SSD model according to data differences to analyze what feature of data exert influence upon the performance of recognizing texts in images. As a result, it is figured out that the number of labeled keywords, the addition of overlapped keyword label, the existence of keywords that is not labeled, the spaces among keywords and the differences of background images are related to the performance of SSD model. This test can lead performance improvement of SSD model or other text-recognizing machine based on deep learning algorithm with high-quality data. SSD model which is re-designed to recognize texts in images and the program developed for creating train data are expected to contribute to improvement of searching system in E-commerce. Suppliers can put less time to register keywords for products and customers can search products with product-details which is written on the catalog.

Classification of Quality Attributes Using Two-dimensional Evaluation Table (수정된 이원평가표를 이용한 품질속성의 분류에 관한 연구)

  • Kim, Gwangpil;Song, Haegeun
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • For several decades, attribute classification methods using the asymmetrical relationship between an attribute performance and the satisfaction of that attribute have been explored by numerous researchers. In particular, the Kano model, which classifies quality attributes into 5 elements using simple questionnaire and two-dimensional evaluation table, has gained popularity: Attractive, One-dimensional, Must-be, Indifferent, and Reverse quality. As Kano's model is well accepted, many literatures have introduced categorization methods using the Kano's evaluation table at attribute level. However, they applied different terminologies and classification criteria and this causes confusion and misunderstanding. Therefore, a criterion for quality classification at attribute level is necessary. This study is aimed to suggest a new attribute classification method that sub-categorizes quality attributes using 5-point ordinal point and Kano's two-dimensional evaluation table through an extensive literature review. For this, the current study examines the intrinsic and extrinsic problems of the well-recognized Kano model that have been used for measuring customer satisfaction of products and services. For empirical study, the author conducted a comparative study between the results of Kano's model and the proposed method for an e-learning case (33 attributes). Results show that the proposed method is better in terms of ease of use and understanding of kano's results and this result will contribute to the further development of the attractive quality theory that enables to understand both the customers explicit and implicit needs.

A Study on Low-Light Image Enhancement Technique for Improvement of Object Detection Accuracy in Construction Site (건설현장 내 객체검출 정확도 향상을 위한 저조도 영상 강화 기법에 관한 연구)

  • Jong-Ho Na;Jun-Ho Gong;Hyu-Soung Shin;Il-Dong Yun
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.208-217
    • /
    • 2024
  • There is so much research effort for developing and implementing deep learning-based surveillance systems to manage health and safety issues in construction sites. Especially, the development of deep learning-based object detection in various environmental changes has been progressing because those affect decreasing searching performance of the model. Among the various environmental variables, the accuracy of the object detection model is significantly dropped under low illuminance, and consistent object detection accuracy cannot be secured even the model is trained using low-light images. Accordingly, there is a need of low-light enhancement to keep the performance under low illuminance. Therefore, this paper conducts a comparative study of various deep learning-based low-light image enhancement models (GLADNet, KinD, LLFlow, Zero-DCE) using the acquired construction site image data. The low-light enhanced image was visually verified, and it was quantitatively analyzed by adopting image quality evaluation metrics such as PSNR, SSIM, Delta-E. As a result of the experiment, the low-light image enhancement performance of GLADNet showed excellent results in quantitative and qualitative evaluation, and it was analyzed to be suitable as a low-light image enhancement model. If the low-light image enhancement technique is applied as an image preprocessing to the deep learning-based object detection model in the future, it is expected to secure consistent object detection performance in a low-light environment.

YouTube as a source of patient education information for elbow ulnar collateral ligament injuries: a quality control content analysis

  • Yu, Jonathan S;Manzi, Joseph E;Apostolakos, John M;Carr II, James B;Dines, Joshua S
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.2
    • /
    • pp.145-153
    • /
    • 2022
  • Background: While online orthopedic resources are becoming an increasingly popular avenue for patient education, videos on YouTube are not subject to peer review. The purpose of this cross-sectional study was to evaluate the quality of YouTube videos for patient education in ulnar collateral ligament (UCL) injuries of the elbow. Methods: A search of keywords for UCL injury was conducted through the YouTube search engine. Each video was categorized by source and content. Video quality, reliability, and accuracy were assessed by two independent raters using five metrics: (1) Journal of American Medical Association (JAMA) benchmark criteria (range 0-4) for video reliability; (2) modified DISCERN score (range 1-5) for video reliability; (3) Global Quality Score (GQS; range 1-5) for video quality; (4) ulnar collateral ligament-specific score (UCL-SS; range 0-16), a novel score for comprehensiveness of health information presented; and (5) accuracy score (AS; range 1-3) for accuracy. Results: Video content was comprised predominantly of disease-specific information (52%) and surgical technique (33%). The most common video sources were physician (42%) and commercial (23%). The mean JAMA score, modified DISCERN score, GQS, UCL-SS, and AS were 1.8, 2.4, 1.9, 5.3, and 2.7 respectively. Conclusions: Overall, YouTube is not a reliable or high-quality source for patients seeking information regarding UCL injuries, especially with videos uploaded by non-physician sources. The multiplicity of low quality, low reliability, and irrelevant videos can create a cumbersome and even inaccurate learning experience for patients.

Design Trend and Improvement Strategies of Contents Developed by Teachers -Focus on Prizewinner of the Research Competition on Educational Informatization- (교사 개발 콘텐츠의 설계 동향과 개선 방안 -교육정보화연구대회 입상작을 중심으로-)

  • Jo, Miheon
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.3
    • /
    • pp.311-322
    • /
    • 2015
  • This study analyzed the trend and problems in the design of contents developed by teachers, and suggested strategies for improvement. It analyzed the contents ranked as the first level in the Research Competition on Educational Informatization for the last 3 years. Concerning the 8 types of instructional activities and the 6 types of knowledge acquisition, most contents took limited types(i.e., the individual tutoring type, the concept learning type and the principle learning type). In addition, when the contents were evaluated according to the quality certification criteria for educational software, it was found that the quality level of the design was low in many criteria. When the content analysis was applied for the in-depth analysis of design characteristics, various problems were found in the areas such as evaluation, feedback and learning objectives. Also other common problems were found in the design areas such as level-based differentiated learning, interaction between students and contents, presentation of text and narration, utilization of information on a student, screen design, the content level appropriate for students. In relation to the problems found from the analysis, some strategies for improvement were suggested concerning the following topics: question selection and guidance for evaluation, content and types of feedback, statement of learning objectives, selection of content, interaction, and screen design.

An Analysis and Evaluation of Cyber Home Study Contents for Self-directed Learning - Focused on the Earth Science Content of the Science Basic Course for the 7th grade - (사이버가정학습의 자율학습용 콘텐츠 분석 및 평가 - 중학교 1학년 과학 기본과정 지구과학영역을 중심으로 -)

  • Na, Jae-Joon;Son, Cheon-Jae;Kook, Dong-Sik
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.392-402
    • /
    • 2010
  • The purpose of this study is to analyze and evaluate the self-directed learning contents of Earth science area in the basic course of the 7th grade. For this purpose, we applied the 'Cyber Home Study Content Quality Control Tool' presented in 'Elementary Secondary Education e-Learning Quality Management Guidelines (Ver.2.0)' of Korea Education & Research Information Service (2008). The results of contents analysis are as follow: First, it was presented that the study guide introduced the contents which should be studied for one class, properly. And it was not analyzed that the diagnosis assesment was not completed in the initiative study; Second, it was possible to study choosing the contents fitting the learner's level of learning in the main study, it was comprised of about 15 minutes. Third, it was performed without feedback for incorrect answers in the learning assessment, just the number of wrong questions. And the learning arrangement present the important contents learned in that class, summarizing and arranging again. The results of content evaluation are as follows: First, a big difference was not showed against the needs analysis, instructional design, interaction in each class. And the evaluation of the ethics was not included a word or sentence not suitable. The evaluation of copyright, it was analyzed that Work within the content display in compliance with international copyright Second, the evaluation of instructional design presented mainly the description of a simple picture based, the visible resources like flash card were poor. And in the evaluation of Supporting System, it was presented that the contents were installed so that it was freely available for learners. But it was analyzed that there was no memo-function learners were able to jot down something during the studying contents. And in the evaluation for evaluation, the clear valuation basis about the described content was not presented. So there were slightly differences for each class. Third, in the evaluation and analysis for learning content, it was presented that there were some big differences for each class because it was not composed of the latest information, not corrected and complementary.