• Title/Summary/Keyword: E-beam Process

Search Result 270, Processing Time 0.029 seconds

Optical properties of $SiO_2$ and $TiO_2$ thin films deposited by electron beam process with and without ion-beam source (전자빔 증착시 이온빔 보조증착 장비의 사용에 따른 $SiO_2 & TiO_2$ 박막의 광학적 특성)

  • Song, M.K.;Yang, W.S.;Kwon, S.W.;Lee, H.M.;Kim, W.K.;Lee, H.Y.;Yoon, D.H.;Song, Y.S.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.145-150
    • /
    • 2007
  • The $SiO_2$ and $TiO_2$ thin films for the multilayer interference filter application were manufactured by electron beam process. In case of electron beam process with ion source, the anode current was controlled by gas volume ratio of $O_2$ and Ar. Substrate temperature of electron beam deposition without ion source was increased from 100 to $250^{\circ}C$ with $50^{\circ}C$ increment. The surface roughness values of $SiO_2$ thin films was most low value at $200^{\circ}C$ substrate temperature and 0.2 A anode current respectively. And the surface roughness values of $TiO_2$ thin films was most low value at room temperature and 0.2 A anode current repectively. The refractive index of $SiO_2$ and $TiO_2$ thin films to be deposited with ion source was usually lower than that of thin films without ion source.

Replication of High Density Patterned Media (고밀도 패턴드 미디어 성형에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.60-63
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth.

  • PDF

Micromachining of the Si Wafer Surface Using Femtoseocond Laser Pulses (펨토초 레이저를 이용한 실리콘 웨이퍼 표면 미세가공 특성)

  • Kim, Jae-Gu;Chang, Won-Seok;Cho, Sung-Hak;Whang, Kyung-Hyun;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.184-189
    • /
    • 2005
  • An experimental study of the femtosecond laser machining of Si materials was carried out. Direct laser machining of the materials for the feature size of a few micron scale has the advantage of low cost and simple process comparing to the semiconductor process, E-beam lithography, ECM and other machining process. Further, the femtosecond laser is the better tool to machine the micro parts due to its characteristics of minimizing the heat affected zone(HAZ). As a result of line cutting of Si, the optimal condition had the region of the effective energy of 2mJ/mm-2.5mJ/mm with the power of 0.5mW-1.5mW. The polarization effects of the incident beam existed in the machining qualities, therefore the sample motion should be perpendicular to the projection of the electric vector. We also observed the periodic ripple patterns which come out in condition of the pulse overlap with the threshold energy. Finally, we could machined the groove with the linewidth of below $2{\mu}m$ for the application of MEMS device repairing, scribing and arbitrary patterning.

Production and Properties of Amorphous TiCuNi Powders by Mechanical Alloying and Spark Plasma Sintering

  • Kim, J.C.;Kang, E.H.;Kwon, Y.S.;Kim, J.S.;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • In present work, amorphous TiCuNi powders were fabricated by mechanical alloying process. Amorphization and crystallization behaviors of the TiCuNi powders during high-energy ball milling and subsequent microstructure changes were studied by X-ray diffraction and transmission electron microscope. TEM samples were prepared by the focused ion beam technique. The morphology of powders prepared with different milling times was observed by field-emission scanning electron microscope and optical microscope. The powders developed a fine, layered, homogeneous structure with milling times. The crystallization behavior showed that glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 628, 755 and 127K, respectively. The as-prepared amorphous TiCuNi powders were consolidated by spark plasma sintering process. Full densified TiCuNi samples were successfully produced by the spark plasma sintering process. Crystallization of the MA powders happened during sintering at 733K.

Effects of Electron Beam Irradiation on Pathogen Inactivation, Quality, and Functional Properties of Shell Egg during Ambient Storage

  • Kim, Hyun-Joo;Yun, Hye-Jeong;Jung, Samooel;Jung, Yeon-Kuk;Kim, Kee-Hyuk;Lee, Ju-Woon;Jo, Cheor-Un
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.603-608
    • /
    • 2010
  • This study investigated the effects of electron beam irradiation on pathogens, quality, and functional properties of shell eggs during storage. A 1st grade 1-d-old egg was subjected to electron beam irradiation at 0, 1, 2, and 3 kGy, after which the number of total aerobic bacteria, reduction of inoculated Escherichia coli and Salmonella Typhimurium, egg quality, and functional properties were measured. Electron beam irradiation at 2 kGy reduced the number of E. coli and S. Typhimurium cells to a level below the detection limit (<$10^2$ CFU/g) after 7 and 14 d of storage. Egg freshness as measured by albumen height and the number of Haugh units was significantly reduced by 1-kGy irradiation. The viscosity of irradiated egg white was also significantly decreased by increased irradiation, whereas its foaming ability was increased. Electron beam irradiation also increased lipid oxidation in egg yolks. These results suggest that electron beam irradiation reduces the freshness of shell eggs while increasing the oxidation of egg yolk and improving important functional properties such as foaming capacity. Electron beam irradiation can also be applied to the egg breaking process since the irradiation reduces the viscosity of egg white, which can allow egg whites and yolks to be separated with greater efficiency.

Effect of the Sulfurization Temperature and Annealing Time of E-Beam Evaporated Sn Precursors on the Growth of SnSx Thin Films (E-빔 증착된 Sn 전구체의 황화 열처리 온도 및 시간에 따른 SnSx 박막 성장 효과)

  • Huang, Tingjian;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.734-739
    • /
    • 2017
  • We prepared $SnS_x$ thin films on both soda-lime glass (SLG) and molybdenum(Mo)/SLG substrates by a two-step process using a Sn precursor followed by sulfur reaction in rapid thermal annealing (RTA) at different sulfurization temperatures ($Ts=200^{\circ}C$, $230^{\circ}C$, $250^{\circ}C$, and $300^{\circ}C$) and annealing times ($t_s=10min$ and 30 min). The single SnS phase was dominant for $200^{\circ}C{\leq}T_s$<$250^{\circ}C$, while an additional phase of $SnS_2$ was appeared at $T_s{\geq}250^{\circ}C$ alongside SnS. The SnS grains in all the samples showed strong growth along the preferred [040] direction. The band-gap energy ($E_g$) of the films was estimated to be 1.24 eV.

Humidity Sensitive Characterization by Electrode Pattern on the Capacitive Humidity Sensor Using Polyimide (폴리이미드 용량형 습도센서의 전극 패턴에 따른 감습 특성)

  • Park, Sung-Back;Shin, Hoon-Kyu;Lim, Jun-Woo;Chang, Sang-Mok;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.566-570
    • /
    • 2014
  • Electrode pattern effects on the capacitive humidity sensor were investigated. The fabrication of the capacitive humidity sensor was formed with three steps. The bottom electrode was formed on the silicon substrate with Pt/Ti thin layer by using shadow mask and e-beam evaporator. The photo sensitive polyimide was formed on the bottom electrode by using photolithography process as a humidity sensitive thin film. The upper electrode was formed on the polyimide thin film with Pt/Ti thin layer by using e-beam evaporator and lift-off method. Three electrode patterns, such as circle, square, and triangle pattern, were used and changed the sizes to investigate the effects. The capacitances of the sensors were decreased 622 to 584 pF with the area decreament of patterns 250,000 to $196,250{\mu}m^2$. From these results, a capacitive humidity sensor with photo sensitive polyimide is expected to be applied to a high sensitive humidity sensor.

Capability of Thermal Field-Flow Fractionation for Analysis of Processed Natural Rubber

  • Lee, Seong Ho;Eun, Cheol Hun;Anthony R. Plepys
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.69-74
    • /
    • 2000
  • Applicability of Thermal field flow fractionation (ThFFF) was investigated for the analysis of masticated natural rubber (NR) adhesives produced bya hot melt mastication process. An optimum ThFFF condition for NR analysis was found by using tetrahydrofuran (THF) as a solvent/carrier and a field-programming. Low flowrate (0.3 mL/min) was used to avoid stopping the flow for the sample relaxation. Measured molecular weight distribution was used to monitor degradation of rubber during the mastication process. Rubber samples collected at three different stages of the mastication process and were analyzed by ThFFF. It was found that in an anaerobic process rubber degradation occurs at the resin-mixing (compounding) zone as well as in the initial break-down zone, while in an aerobic process most of degradation occurs at the initial breakdown zone. It was also found that E-beam radiation on NR causes a slight increase in the NR molecular weight due to the formation of a branched structure.

Electrochemical Characteristic on Lithium Intercalation into the Interface between Organic Electrolyte and Amorphous WO3 Thin Film Prepared by e-beam Evaporation Method (e-beam 증발법으로 제조된 비정질 WO3박막과 전해질 계면으로 삽입되는 리튬의 층간 반응에 관한 전기화학적 특성)

  • Min, Byoung-Chul;Sohn, Tae-Won;Ju, Jeh-Beck
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1022-1028
    • /
    • 1997
  • This work was performed to study the characteristics of electrochemical intercalation reactions occurring at the interface between the organic electrolyte and tungsten trioxide thin film (thickness of $4000{\AA}$) prepared by e-beam evaporation method as cathodically coloring oxide with regard to the electrochromism by the intercalating reactions of the lithium cation in the 1M $LiClO_4/PC$ organic solution. The characteristics of electrochemical intercalation reactions were investigated by various DC electrochemical methods such as cathodic Tafel polarization test, multiple and the single sweep cyclic voltammetry and the coulomety titrations method. The surfaces of thin films were observed with the patterns of X ray diffraction after the coloring and bleaching reactions. In comparison with the previous results that $WO_3$ thin film intersely detached from the surface of electrode when the hydrogen cation was intercalated into $WO_3$ thin film in the o.1N $H_2SO_4$ aqueous solution, the intercalation reaction of lithium cation into $WO_3$ thin film in the 1M $LiClO_4/PC$ organic solution was shown that the stable bleaching and coloration was appeared within 1.0V of the applied overpotential. When the overpotential of electrochromic reaction for lithium cation in the 1M $LiClO_4/PC$ organic solution had been applied up to 1.5V, the accumulation phenomenon of lithium in amorphous $WO_3$ thin film layer occurred because the inserted lithium into amorphous $WO_3$ thin layer for coloring process was not fully removed from the thin layer to the electrolyte during bleaching process. It was found that there is a limitation of applied overpotential for coloring process by the reduction of the current densities of bleaching and coloration after few number of coloring and bleaching cycles.

  • PDF