• Title/Summary/Keyword: E-Plane

Search Result 1,045, Processing Time 0.032 seconds

Punched-SIW Multi-Section E-Plane Transformer (천공된 기판 집적 도파관 다단 E-Plane 변환기)

  • Cho, Hee-Jin;Byun, Jindo;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.259-269
    • /
    • 2013
  • In this paper, we propose an SIW(Substrate Integrated Waveguide) multi-section E-plane transformer using air-holes for an SIW system with variable thicknesses. Air-holes are inserted into a SIW E-plane quarter wavelength transformer for matching an E-plane impedance discontinuity. A PSIW(Punched Substrate Integrated Waveguide) consisted of air-holes has an SIW characteristic impedance tunability because of reducing a equivalent shunt capacitance of the SIW. And, a PSIW multi-section E-plane transformer is implemented for improving a matching bandwidth by using the Chebyshev polynomial. The measurement results of PSIW double-section E-plane transformer show that the insertion loss($S_{21}$) is $1.57{\pm}0.11$ dB and input return loss($S_{11}$) is more than 15 dB from 11.45 GHz to 13.6 GHz.

A design of magnetically tunable X-band E-plane waveguide filters (X-밴드 magnetically tunable E-평면형 도파관 여파기 설계)

  • 이해선;윤상원;장익수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.16-26
    • /
    • 1998
  • This paper presents a design methodology for magnetically tunable X-band E-plane type waveguide filters. The proposed design is based on using of quarter wavelength transmission line for compensating the negative length transmission line of end K-inverters of E-plane type waveguide filters. The derived formulae are applied for initial design and the correction method is also provided for final design by considering the frequency dependent characteristic of K-inverters. The analysis results of E-plane pype waveguide structure loaded with ferrite slab are obtained using the edge based finite element method including higher order mode effecets. It is shown that the unilateral finline E-plane type waveguide filter as well as the bilateral finline E-plane type waveguide filter achieves the the manetically tunable characteristic. The X-band experimantal results for bilateral and unilateral finline E-plane type waveguide filters agree well with the simulated data.

  • PDF

A Study on K-Inverter Characteristics for Triple E-Plane type Structures (삼중 E-평면형 구조의 K-인버터특성에 관한 연구)

  • 오영주
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.252-256
    • /
    • 1990
  • In this paper, we proposed E-plane structures to obtain the high insertion loss at stopband and show that T-equivalent and K-inverter of Triple E-plane structures are better than those of All-Metal Insert E-plane structures. To show the characteristics first order bandpass filter are designed and tested at X band.

  • PDF

Slit Folded Type Microstrip Antenna for Omnidirectional E-plane and H-plane (전방향성 E & H면 슬릿 Folded형 마이크로스트립 패치 안테나)

  • 김종래;우종명;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.956-963
    • /
    • 2002
  • A linearly polarized folded type and H-shape slit folded type microstrip patch antenna at GPS(center frequency:1.575 GHz) were designed and fabricated by folding a conventional single $\lambda_{g}/2(\lambda_{g}:wavelength)$ rectangular patch a half along the length direction at the center of patch and inserting ground plane in the middle. As a result, two types of omnidirectional radiation patterns for E-plane (for zx-plane) in the direction of the length of patch and H-plane (for xy-plane) have been acquired. The experimental results show that the average gains of folded type and slit folded type for omnidirectional E-plane and H-plane are -1.5 dBd (-2.4 dBd) and -3.27 dBd(-2.5 dBd). Slit folded type microstrip patch antenna was more miniaturized than folded type microstrip patch antenna by 27.5 %. In case of slit folded type antenna, average gains of omnidirectional radiation pattern for E & H-plane are almost same.

A Study on Radiation Char acter istics of Electr ically Small Antenna for Low-VHF Band Direction Finding according to Tank Mounting Position (Low-VHF 대역 방향탐지용 소형 안테나의 탱크 장착 위치에 따른 방사특성 연구)

  • Moon, Sang-Man;Woo, Jong-Myung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • This paper presents a study on the radiation characteristics of low-VHF band electrically small antenna for direction finding. Firstly, it is simulated the antenna for mounting on flat ground and tank model(in 40MHz), and measured for mounting 1/10 scaled model(in 400 MHz). In case of flat ground feed at ${\phi}=0^{\circ}$, $180^{\circ}$(xz-plane), yz-plane $E_{\phi}$ (H-plane) and xz-plane $E_{\theta}$ (E-plane) radiation patterns are hemispheric omni-direction due to effect of narrow ground side. Then, in case of tank model, it is shown equally in case of the flat ground, yz-plane $E_{\phi}$ (H-plane) and xz-plane $E_{\theta}$ (E-plane) radiation patterns are hemispheric omni-direction nearly without effect of mounting position. Therefore, the suggested electrically small antenna for direction finding, in case of mounting on ground narrow side xz-plane(E-plane), is shown more stable radiation patterns as direction finding antenna.

Effect of a Finite Substrate on the Radiation Characteristics of a Linear Phased Array Antenna Positioned along the E-plane (유한한 기판 크기가 E-평면으로 배열된 선형 위상 배열 안테나의 방사 특성에 미치는 영향)

  • Kim, Tae-Young;Kim, Gun-Su;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.46-53
    • /
    • 2011
  • The effect of a finite substrate on the radiation characteristics of a linear 7-element array antenna positioned along the E-plane is investigated. Active reflection coefficients and average active element patterns are simulated for various substrate sizes. The E-plane radiation pattern of a fully excited array for various scan angles is correlated with the active reflection coefficient and average acitive element pattern. The effect of E-plane substrate size on the radiation characteristics of a linear array along the E-plane is larger than that of H-plane substarte size.

Analysis of Rectangular Waveguide E-Plane Filters by the Method of Moments (구형 도파관내 전계면 필터의 모멘트법에 의한 해석)

  • 방재훈;윤소현;이석곤;안병철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.358-364
    • /
    • 2000
  • In this paper, an efficient moment-method technique is proposed for analyzing rectangular waveguide E-plane filters. Techniques are presented for the fast evaluation of Green's function and for the efficient evaluation of integrals arising in the E-plane of the rectangular waveguide. The structure boundary is represented by the piecewise linear segments. Simple pulse-expansion and point-matching technique are used. The entire E-plane filter structure is simulated by the method of moments. Three representative cases of the E-plane filter are analyzed and compared with results by other researchers.

  • PDF

Printed Reflectarray Antenna Design for Parabolic Reflector Volume Reduction (파라볼릭 반사기 체적 축소용 프린트 리플렉트어레이 안테나 설계)

  • Moon, Sang-Man;Kim, In-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.140-146
    • /
    • 2013
  • In this study, we discuss about the printed reflectarray antenna design for parabolic reflector volume reduction. For this, we simulated and measured the phase characteristics of the unit array element of reflectarray antenna using waveguide simulator. As a results, the maximum phase variation is $298^{\circ}$ by simulation, the average phase variation is $309^{\circ}$ by measurement in 10GHz. And the printed Reflectarray antenna gain is 28.3dBi, 3dB beamwidth is E-plane $5.1^{\circ}$, H-plane $5.2^{\circ}$, sidelobe level is E-plane -11.4dB, H-plane -17.6dB.

Design of monopulse feeder using corrugated E-plane horn (E-평면 컬러게이트 혼을 이용한 모노펄스 급전기 설계)

  • 이주형;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2099-2108
    • /
    • 1996
  • The performance of the E-plane monopulse feeder is shown to e improved by using corrugated horn and multimode design. The proposed multimode corrugated horn is analyzed by the mode matching technique. an E-plane monopulse feeding horn is designed and fabricated to show the performance of the multimode corrugated horn. The experiment agrees quite well with the thoretical analysis. The results can be used in the design of monopulse type tracking radar antenna.

  • PDF

Design of Dual Fuzzy Logic Controller using $e-{\Delta}e$ Phase Plane for Hydraulic Servo Motor (유압 서보 모터를 위한 $e-{\Delta}e$ 위상평면을 이용한 이중 퍼지 로직 제어기 설계)

  • Shin, Wee-Jae;Moon, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.222-226
    • /
    • 2007
  • In this paper we composed the dual fuzzy rules using each region of specific points and $e-{\Delta}e$ phase plane In order to make dual fuzzy rule base. We composed the fuzzy control rules which can decrease rise time, delay time, maximum overshoot than basic fuzzy control rules. proposed method is alternately use at specific points of $e-{\Delta}e$ phase plane with two fuzzy control rules that is one control rule occruing the steady state error in transient region and another fuzzy control rule use to decrease the steady state error and rapidly converge at the convergence region. Also, two fuzzy control rules in the $e-{\Delta}e$ phase plane decide the change time according to response characteristics of plants. In order to confirm thef proposed algorithm. As the results of experiments through the hydraulic servo motor control system with a DSP processor, We verified that proposed dual fuzzy control rules get the good response compare with the basic fuzzy control rule.

  • PDF