최근 미국을 중심으로 MOOC(Massive Open Online Courses) 열풍이 불고 있으며 전세계적으로 확산되고 있다. MOOC는 온라인상에서 누구나 수강할 수 있게 공개된 강의를 의미한다. 우리나라에서도 KERIS(Korea Education & Research Information Service)와 각 대학을 중심으로 많은 강의를 제공하고 있다. 본 논문의 목적은 MOOC의 현황과 개선안을 제시하는 것이다. 이를 위해 먼저 MOOC의 정의와 역사, 국내외 현황을 소개한다. 또한 개선안으로서 대학의 적극적인 참여와 캠퍼스 가치 창출, MOOC 기관의 수익모델 개발과 수료율 향상, LMS(Learning Management System)의 개발과 우수 강사 확보, 강의 번역 등의 과제와 함께 최종적으로는 MOOC가 제공하는 인증 시스템의 질 확보 문제 등을 다양하게 제시하였다.
많은 정보통신기술 기업들은 자체적으로 개발한 인공지능 기술을 오픈소스로 공개하였다. 예를 들어, 구글의 TensorFlow, 페이스북의 PyTorch, 마이크로소프트의 CNTK 등 여러 기업들은 자신들의 인공지능 기술들을 공개하고 있다. 이처럼 대중에게 딥러닝 오픈소스 소프트웨어를 공개함으로써 개발자 커뮤니티와의 관계와 인공지능 생태계를 강화하고, 사용자들의 실험, 적용, 개선을 얻을 수 있다. 이에 따라 머신러닝 분야는 급속히 성장하고 있고, 개발자들 또한 여러가지 학습 알고리즘을 재생산하여 각 영역에 활용하고 있다. 하지만 오픈소스 소프트웨어에 대한 다양한 분석들이 이루어진 데 반해, 실제 산업현장에서 딥러닝 오픈소스 소프트웨어를 개발하거나 활용하는데 유용한 연구 결과는 미흡한 실정이다. 따라서 본 연구에서는 딥러닝 프레임워크 사례연구를 통해 해당 프레임워크의 도입 전략을 도출하고자 한다. 기술-조직-환경 프레임워크를 기반으로 기존의 오픈 소스 소프트웨어 도입과 관련된 연구들을 리뷰하고, 이를 바탕으로 두 기업의 성공 사례와 한 기업의 실패 사례를 포함한 총 3 가지 기업의 도입 사례 분석을 통해 딥러닝 프레임워크 도입을 위한 중요한 5가지 성공 요인을 도출하였다: 팀 내 개발자의 지식과 전문성, 하드웨어(GPU) 환경, 데이터 전사 협력 체계, 딥러닝 프레임워크 플랫폼, 딥러닝 프레임워크 도구 서비스. 그리고 도출한 성공 요인을 실현하기 위한 딥러닝 프레임워크의 단계적 도입 전략을 제안하였다: 프로젝트 문제 정의, 딥러닝 방법론이 적합한 기법인지 확인, 딥러닝 프레임워크가 적합한 도구인지 확인, 기업의 딥러닝 프레임워크 사용, 기업의 딥러닝 프레임워크 확산. 본 연구를 통해 각 산업과 사업의 니즈에 따라, 딥러닝 프레임워크를 개발하거나 활용하고자 하는 기업에게 전략적인 시사점을 제공할 수 있을 것이라 기대된다.
사이버가정학습은 사교육비 경감, 지역 간의 격차 해소, 학력신장이라는 정책 목표를 가지고 국가수준에서 추진된 이러닝 시스템이기 때문에, 그 효과를 검증하기 위한 선행 연구들은 교육적 목표 보다는 정책적 목표 달성 여부에 초점을 맞추어 평가 준거가 개발되었다. 선행 연구에서 제시한 평가준거들은 교수-학습 활동 요소에 따른 사이버가정학습의 효과와 교수-학습 활동과 관련된 사이버가정학습의 개선사항을 명확히 규명하는 데는 한계가 있다. 따라서 교육적 측면에서 사이버가정학습의 효과를 분석할 수 있는 평가 모델이 필요하다. 본 논문의 목적은 교수-학습 활동 요수에 따라 교육적 평가모델을 설계하고 사이버가정학습의 효과성을 분석하는 것이다. 이를 위해 사이버 가정학습과 관련된 국 내외 연구들을 조사하였고, 교수-학습 활동요소에 따라 교육적 평가 모델을 설계하였으면, 이에 근거하여 사이버가정학습을 이용한 학생들을 대상으로 설문 조사와 심층 면접을 통해 모델을 실험하였다.
정부는 새로운 영역의 전자정부 서비스를 창출하기 위한 계획을 추진 중이다. 업무절차 개선 측면에서 dBrain과 e-사람, 전자결재 및 업무관리를 위한 온나라 등은 상당한 성과를 이루었으며, 현재는 새로이 부각된 정보기술을 도입하여 기존의 행정서비스를 개선하고 지능형 전자정부를 구현하기 위한 노력을 지속하고 있다. 본고에서는 그중 자가학습기반의 지능형 행정서비스 구축이 실제 업무를 추진하는 공무원들의 업무프로세스에 효율적인지, 지속사용하는데 영향을 미치는지를 파악하고자 하였다. 인공지능, 빅데이터, 블록체인 등의 발전된 정보기술에 대한 개인의 인식 및 태도를 바탕으로 개인 혁신성을 선행변수로 하여 UTAUT 변수들이 지속사용의도에 영향을 미치는 지에 대해 공무원 대상 설문 결과를 이용하여 지능형 정부서비스를 대상으로 검증하여 행정서비스에 대한 영향요소를 파악하였다. 정부행정서비스 사용자들은 혁신적인 행정서비스의 구축 및 도입이 국민에게 더욱 효율적으로 활용될 수 있다고 믿으며, 정보기술 발전에 따라 서비스의 활용 및 제공에 대한 기대감을 높게 가지고 있다고 파악되었다. 향후 전자정부 서비스를 활용하는 국민을 대상으로도 모형을 적용하여 연구할 예정이다.
Purpose: The aims of this study were to assess the presence of core patient safety practices in Korean hospitals and assess the differences in reporting and learning systems of patient safety, infrastructure, and safe practices by hospital characteristics. Methods: The authors developed a questionnaire including 39 items of patient safety staffing, health information system, reporting system, and event-specific prevention practices. The survey was conducted online or e-mail with 407 tertiary, general and specialty hospitals. Results: About 90% of hospitals answered the self-reporting system of patient safety related events is established. More than 90% of hospitals applied incidence monitoring or root cause analysis on healthcare-associated infection, in-facility pressure ulcers and falls, but only 60% did on surgery/procedure related events. More than 50% of the hospitals did not adopted present on admission (POA) indicators. One hundred (80.0%) hospitals had a department of patient safety and/or quality and only 52.8% of hospitals had a patient safety officer (PSO). While 82.4% of hospitals used electronic medical records (EMRs), only 53% of these hospitals adopted clinical decision support function. Infrastructure for patient safety except EMRs was well established in training, high-level and large hospitals. Most hospitals implemented prevention practices of adverse drug events, in-facility pressure ulcers and falls (94.4-100.0%). But prevention practices of surgery/procedure related events had relatively low adoption rate (59.2-92.8%). Majority of prevention practices for patient safety events were also implemented with a relatively modest increase in resources allocated. Conclusion: The hospital-based reporting and learning system, EMRs, and core evidence-based prevention practices were implemented well in high-level and large hospitals. But POA indicator and PSO were not adopted in more than half of surveyed hospitals and implementation of prevention practices for specific event had low. To support and monitor progress in hospital's patient safety effort, national-level safety practices set is needed.
본 연구는 텍스트마이닝 기법 중 토픽 분석을 활용하여 관련 업계 국내 1위 S사(社)의 최고경영자 대상 온라인 교육 콘텐츠 강의 중심으로 원문 스크립트를 분석했다. 지난 5년간(2011~2015)년 서비스된 총 4,824개 콘텐츠를 바탕으로 핵심 키워드를 추출한 다음 주제별 22가지 토픽으로 분류한 후 동향 분석을 수행했다. 이를 통해 최근 콘텐츠 비중이 급증하고 있는 토픽 주제를 확인할 수 있었다. 다음으로 토픽 분석을 통해 분류한 토픽 및 카테고리를 바탕으로 회원 평가 요인을 적용해 카테고리 및 각 토픽별 지적 관심도를 체계화 할 수 있었다. 경영·경제 분야에서는 마케팅전략, 인사/조직, 커뮤니케이션 분야 등이 높은 관심도와 만족도를 나타냈다. 인문 분야에서는 철학, 전쟁사, 역사(서양) 라이프스타일에서는 마음건강 분야가 관심도와 만족도 둘 다 높은 것으로 나타났다. 이와 함께 교육용 콘텐츠가 시대 변화에 민감하게 반응할지라도 회원의 관심과 만족도 제고에는 실패할 수 있다는 사실을 확인할 수 있었다. 최근 콘텐츠 비중은 급증했지만 평균 이하의 만족도를 기록한 IT기술 토픽이 대표적 사례라 할 수 있다. 이를 통해 최고경영자 대상 콘텐츠 제작 시 단순히 기술적 측면의 정보전달에서 끝나는 것이 아닌 기술 적용을 통한 가치혁신에 대한 깊이 있는 시사점을 도출하거나 풍부한 영상 자료를 바탕으로 다양한 볼거리를 제공하는 등 양적인 측면과 함께 질적인 측면을 고려해야 한다는 교훈을 얻을 수 있었다. 본 연구는 포털 사이트 혹은 SNS 자료가 아닌 국내 가장 영향력 있는 이러닝 기업 데이터를 토대로 분석을 진행했기에 보다 심도 있고 실용적인 결과를 도출했다. 또한 이러닝 관련 연구 분야에서 지금까지는 드물었지만 기술의 발달로 점점 연구 조사 방법론으로 기대가 높아진 텍스트마이닝 방법에 대하여 그 적용 가능성을 성공적으로 탐색해 보았다. 기존에는 콘텐츠 운영 현황 분석 시 콘텐츠 프로그램명에 입각, 표면적인 방식으로 분류할 수밖에 없는 한계가 존재했다면 텍스트마이닝 방법론을 활용하면 비정형 데이터 콘텐츠 스크립트를 바탕으로 분석하여 내용을 바탕으로 한 보다 심도 있는 콘텐츠 분류 및 주제 분류를 이끌어 낼 수 있다. 이를 바탕으로 연도에 따른 주제별 콘텐츠 서비스 현황을 도식화한다면 현재 부족한 분야와 필요한 분야에 대한 보다 심도 있는 고찰이 가능하다. 본 연구는 다양한 텍스트마이닝 기법 중에서 이러닝의 상황에서 효과적으로 연구하기 위한 새로운 방법론을 제시했으며 향후 최고경영자 교육 관련 분야별 지적 관심도에 대한 분석에 도움이 될 것으로 기대된다.
본 논문에서는 미국의 전자증거개시(E-Discovery) 제도의 확산에 따라 국내 도입에 대비하여 표준화 된 업무 수행 절차 확립을 위해 선행 연구가 이루어지고 있는 EDRM(Electronic Discovery Reference Model) 및 The Sedona Conference 프로젝트에 대한 분석을 바탕으로 일반화 된 E-Discovery 프로세스와 세부 절차 별 필수 업무 사항들을 제시한다. 또한 이런 절차들이 실제 소송에 활용됨에 있어서 근본적으로 내포하고 있는 시간과 비용 문제를 해결하기 위한 대체 기술로써 기계 학습, 오픈 소스 형태의 정보 검색 라이브러리, Hadoop 기반의 대용량 데이터 분산 처리 기법 등을 소개하고, E-Discovery 프로세스 상에서의 활용 방안을 제시하여, 관련 서비스 및 솔루션을 개발하고자 하는 벤더들에게 유용한 정보를 제공한다. 이는 또한 제도적 변화에 발맞추어 업무 시스템을 재정비하고자 하는 기업들로 하여금 소송에 보다 효과적으로 대처할 수 있도록 한다.
Purpose - This research aims to examine the effect of e-business adoption on firm's growth and profitability in the distribution industry. The value added from the distribution industry acts as the cost of other industries. As the distribution industry develops, its stage becomes shorter and the distribution margin becomes smaller. Therefore, e-business is expected to have a different effect on the distribution industry than other industries. Research design, data and methodology - The previous research generally used e-business adoption as an independent variable and firm's performance as a dependent variable. This study elaborated the model using a dynamic panel model that includes the performance variable of the previous year as an independent variable. By employing system GMM (Generalized Method of Moments), the endogeneity problem in the dynamic panel model can be solved. For the analysis, I extracted the distribution companies as the raw data in the National Statistical Office's Business Activity Survey over the period 2006 to 2012. Results - The growth rate of firms adopting e-business was 0.299%p higher than that of the non-adopter. However, only ERP (Enterprise Resource Planning), KMS (Knowledge Management System) and SCM (Supply Chain Management) contributed positively to the growth rate. In the case of profitability, it was 0.04%p higher than the distribution companies that did not adopt e-business. ERP and LMS (Learning Management System) improve profitability, while SCM reduces profitability. Consequently, while ERP improves both growth and profitability, SCM improves growth but reduces profitability. In addition, KMS improves firm's growth only, and LMS does only profitability, showing that each e-business has a differentiated effect. Conclusions - Since the distribution industry has different characteristics from manufacturing and other service industries, the introduction of e-business may not guarantee the growth and profitability of distribution companies. Careful introduction considering the characteristics of the distribution industry is required. In particular, it is necessary to select an e-business meeting the characteristics and needs of a distribution company, and thereafter, it is required for the company's own efforts to internalize it within the system.
트위터는 페이스북과 더불어 전 세계적으로 인기 있는 SNS(Social Network Service)이다. 트위터에서 이메일 인증 방식을 악용하여 대량 생성된 스패머 계정은 유해한 콘텐츠로 트위터 사용자들에게 불편함을 준다. 본 논문에서는 이러한 문제를 해결하고자 관계 기반 특징을 이용한 스패머 탐지 기법을 제안한다. 관계 기반 특징이란 사용자의 호감 정도를 표현할 수 있는 친구 관계 특징과 사용자 간의 유사성을 나타낼 수 있는 유형 관계 특징들을 의미한다. 기존의 스패머 탐지 기법과 본 논문에서 제안하는 탐지 기법의 성능을 스패머의 비율을 3%에서 30%까지 변화시키면서 비교 실험한 결과, 본 논문에서 제안하는 기법이 Naive Bayesian Classifier와 Decision Tree 모두에서 더 우수한 성능을 보였다.
본 연구는 교수학습 맥락에서 수학교사의 중심신념과 주변신념의 탐색을 목적으로 한다. 이러한 목적을 위해 본 연구는 고등학교 현직교사 8명을 대상으로 가상의 수학 수업 동영상을 활용하여 수학적 신념 측면에서 교사 노티싱(noticing)을 분석하였다. 분석결과, 노티싱하는 교사는 동영상 속 수업교사의 교수학습 문제 상황에 대하여 자신의 수학적 신념을 반영하여 비판하고, 교수학습 대안을 제시하였다. 그리고, 본 연구의 노티싱 분석은 '교수학습의 학생참여'와 같은 특정 노티싱 주제에 반영된 교사들의 수학적 신념을 비교하여 교사 개인의 상대적 중심신념과 주변신념을 드러내었다. 이러한 연구 결과를 통하여 본 연구는 노티싱을 활용하여 교수학습 맥락의 제약조건에서 수학교사의 중심신념과 주변신념을 추출하는 모형을 제안하였으며 부가적으로 수학교사의 교수학습-의사결정-전문성을 관찰할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.