• Title/Summary/Keyword: Dynamic wireless power transfer

Search Result 8, Processing Time 0.023 seconds

A Shared Channel Design for the Power and Signal Transfers of Electric-field Coupled Power Transfer Systems

  • Su, Yu-Gang;Zhou, Wei;Hu, Aiguo Patrick;Tang, Chun-Sen;Hua, Rong
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.805-814
    • /
    • 2016
  • Electric-field coupled power transfer (ECPT) systems have been proposed as an alternative wireless power transfer (WPT) technology in recent years. With the use of capacitive plates as a coupling structure, ECPT systems have many advantages such as design flexibility, reduced volume of the coupling structure and metal penetration ability. In addition, wireless communications are effective solutions to improve the safety and controllability of ECPT systems. This paper proposes a power and signal shared channel for electric-field coupled power transfer systems. The shared channel includes two similar electrical circuits with a band pass filter and a signal detection resistor in each. This is designed based on the traditional current-fed push-pull topology. An analysis of the mutual interference between the power and signal transmission, the channel power and signal attenuations, and the dynamic characteristic of the signal channel are conducted to determine the values for the electrical components of the proposed shared channel. Experimental results show that the designed channel can transfer over 100W of output power and data with a data rate from 300bps to 120 kbps.

Modeling and Design of Zero-Voltage-Switching Controller for Wireless Power Transfer Systems Based on Closed-Loop Dominant Pole

  • Chen, Cheng;Zhou, Hong;Deng, Qijun;Hu, Wenshan;Yu, Yanjuan;Lu, Xiaoqing;Lai, Jingang
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1235-1247
    • /
    • 2019
  • Zero-Voltage-Switching (ZVS) operation for a Wireless Power Transfer (WPT) system can be achieved by designing a ZVS controller. However, the performance of the controller in some industrial applications needs to be designed tightly. This paper introduces a ZVS controller design method for WPT systems. The parameters of the controller are designed according to the desired performance based on the closed loop dominant pole placement method. To describe the dynamic characteristics of the system ZVS angle, a nonlinear dynamic model is deduced and linearized using the small signal linearization method. By analyzing the zero-pole distribution, a low-order equivalent model that facilitates the controller design is obtained. The parameters of the controller are designed by calculating the time constant of the closed-loop dominant poles. A prototype of a WPT system with the designed controller and a five-stage multistage series variable capacitor (MSVC) is built and tested to verify the performance of the controller. The recorded response curves and waveforms show that the designed controller can maintain the ZVS angle at the reference angle with satisfactory control performance.

Magnetic Induction Communication System for Electric Vehicle on Smart Grid (스마트 그리드 전기자동차를 위한 자기장 통신 시스템 구현 연구)

  • Lee, Jong-Min;Chang, Woo-Hyuk;Jung, Bang-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1381-1389
    • /
    • 2010
  • The smart grid technology is expected to significantly improve energy efficiency by dynamic power supply. One of its application is the Vehicle-to-Grid(V2G) that utilizes an electric vehicle's battery as a household storage battery. Meanwhile, a lot of researches are recently investigated in the area of wireless energy transfer technology because of its convenience and safety in charging a battery. With the wireless energy transfer infrastructure a wireless magnetic induction communication technique can help the dynamic power supply of the smart grid more efficient. In this paper, we propose a wireless magnetic induction communication sion cowhich includes data transmission and location-aware functions. We expect the sion cohelp the smart grid to control power supply more efficiently. We also developed its test-bed and evaluated the performance.

Development of Four-Way Analog Beamforming Front-End Module for Hybrid Beamforming System

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.4
    • /
    • pp.254-259
    • /
    • 2020
  • Phased-array antennas comprise a demanding antenna design methodology for commercial wireless communication systems or military radar systems. In addition to these two important applications, the phased-array antennas can be used in beamforming for wireless charging. In this study, a four-way analog beamforming front-end module (FEM) for a hybrid beamforming system is developed for 2.4 GHz operation. In a hybrid beamforming scheme, an analog beamforming FEM in which the phase and amplitude of RF signal can be adjusted between the RF chain and phased-array antenna is required. With the beamforming and beam steering capability of the phased-array antennas, wireless RF power can be transmitted with high directivity to a designated receiver for wireless charging. The four-way analog beamforming FEM has a 32 dB gain dynamic range and a phase shifting range greater than 360°. The maximum output RF power of the four-way analog beamforming FEM is 40 dBm (=10 W) when combined the four individual RF paths are combined.

Demand-based charging strategy for wireless rechargeable sensor networks

  • Dong, Ying;Wang, Yuhou;Li, Shiyuan;Cui, Mengyao;Wu, Hao
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.326-336
    • /
    • 2019
  • A wireless power transfer technique can solve the power capacity problem in wireless rechargeable sensor networks (WRSNs). The charging strategy is a wide-spread research problem. In this paper, we propose a demand-based charging strategy (DBCS) for WRSNs. We improved the charging programming in four ways: clustering method, selecting to-be-charged nodes, charging path, and charging schedule. First, we proposed a multipoint improved K-means (MIKmeans) clustering algorithm to balance the energy consumption, which can group nodes based on location, residual energy, and historical contribution. Second, the dynamic selection algorithm for charging nodes (DSACN) was proposed to select on-demand charging nodes. Third, we designed simulated annealing based on performance and efficiency (SABPE) to optimize the charging path for a mobile charging vehicle (MCV) and reduce the charging time. Last, we proposed the DBCS to enhance the efficiency of the MCV. Simulations reveal that the strategy can achieve better performance in terms of reducing the charging path, thus increasing communication effectiveness and residual energy utility.

Power Management for Software Radio Systems (소프트웨어 라디오 시스템을 위한 전력 관리 기법)

  • Gu, Bon-Cheol;Piao, Xuefeng;Heo, Jun-Young;Jeon, Gwang-Il;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1051-1055
    • /
    • 2010
  • Software defined radio(SDR) technology implements wireless communication protocols as software instead of dedicated hardware. SDR enables reconfiguration of wireless communication protocols without expensive hardware modification. However, as the SDR systems are equipped with additional programmable processors, they suffer significant power dissipation. This paper proposes a novel power management technique for SDR systems, called the combined modulation and voltage scaling (CMVS). Numerical analyses were performed to evaluate the effectiveness of CMVS. The results show that CMVS minimizes power dissipation while satisfying the given data transfer rate.

Slew-Rate Enhanced Low-Dropout Regulator by Dynamic Current Biasing

  • Jeong, Nam Hwi;Cho, Choon Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.376-381
    • /
    • 2014
  • We present a CMOS rail-to-rail class-AB amplifier using dynamic current biasing to improve the delay response of the error amplifier in a low-dropout (LDO) regulator, which is a building block for a wireless power transfer receiver. The response time of conventional error amplifiers deteriorates by slewing due to parasitic capacitance generated at the pass transistor of the LDO regulator. To enhance slewing, an error amplifier with dynamic current biasing was devised. The LDO regulator with the proposed error amplifier was fabricated in a $0.35-{\mu}m$ high-voltage BCDMOS process. We obtained an output voltage of 4 V with a range of input voltages between 4.7 V and 7 V and an output current of up to 212 mA. The settling time during line transient was measured as $9{\mu}s$ for an input variation of 4.7-6 V. In addition, an output capacitor of 100 pF was realized on chip integration.

Implementation of a dynamic high-performance Notch Filter for Power-Line Communications (전력선통신을 위한 동적 고성능 Notch Filter 구현)

  • Shin, Seong-Kyun;Lee, Byung-Jin;Jang, Dong-Won;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.221-227
    • /
    • 2013
  • Recent studies have been conducted on powerline communications as a viable alternative to the spread of the spread of the Internet and the Internet as the chief source of information act in the information age, the internet does not reach local Last Mile Solution. Powerline communication, but because it has been designed to transfer power to the high frequency signal to be sent when the close of wireless communications services impacted. The notch filters of a common way to eliminate the interference are used. In this paper, a dynamic high-performance notch filter applying WDF performance was verified through MATLAB and was implemented using a TI's TMS320C6416T DSP board.