
OR I G I N A L AR T I C L E

Demand‐based charging strategy for wireless rechargeable
sensor networks

Ying Dong | Yuhou Wang | Shiyuan Li | Mengyao Cui | Hao Wu

College of Communication Engineering,
Jilin University, Changchun, China

Correspondence
Ying Dong, College of Communication
Engineering, Jilin University, Changchun,
China.
Email: dongying@jlu.edu.cn

Funding information
This research was supported by the
Science and Technology Department of
Jilin Province (No. 20180101042JC).

A wireless power transfer technique can solve the power capacity problem in

wireless rechargeable sensor networks (WRSNs). The charging strategy is a wide-

spread research problem. In this paper, we propose a demand‐based charging

strategy (DBCS) for WRSNs. We improved the charging programming in four

ways: clustering method, selecting to‐be‐charged nodes, charging path, and charg-

ing schedule. First, we proposed a multipoint improved K‐means (MIKmeans)

clustering algorithm to balance the energy consumption, which can group nodes

based on location, residual energy, and historical contribution. Second, the

dynamic selection algorithm for charging nodes (DSACN) was proposed to select

on‐demand charging nodes. Third, we designed simulated annealing based on per-

formance and efficiency (SABPE) to optimize the charging path for a mobile

charging vehicle (MCV) and reduce the charging time. Last, we proposed the

DBCS to enhance the efficiency of the MCV. Simulations reveal that the strategy

can achieve better performance in terms of reducing the charging path, thus

increasing communication effectiveness and residual energy utility.
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1 | INTRODUCTION

Wireless sensor networks (WSNs) are composed of many
finite energy sensors and several sink nodes, where the sen-
sor nodes can sense events such as the temperature, humid-
ity, and content of pollutants in the atmosphere. In
particular, the performance of a WSN is constrained by the
capacity of the battery [1]. To extend the lifetime of a WSN
as much as possible, many researchers have proposed vari-
ous approaches.

Generally, there are two kinds of methods to solve the
problem. The first one is a resource‐saving method that
uses an optimization method to improve the WSN's effi-
ciency. For example, efficient routing protocols such as
low‐energy adaptive clustering hierarchy (LEACH) [2],

energy aggregation of medium access control (MAC) pro-
tocols [3], clustering algorithm [4,5], controlling topology
[6], and data fusion [7] have been put forward. Although
these intensive efforts were developed to a high degree of
efficiency, the limitation of energy has not been resolved.
The finite lifetime is still the key factor that affects the
wide‐scale deployment of a WSN.

Some scientists devoted their efforts to finding har-
vesting energy for WSNs. They conducted extensive
studies that included harvesting energy from the sur-
rounding environment such as wave energy, solar energy,
and thermal energy [8–10]. The harvested energy is
unstable and uncontrollable by these methods. A recent
breakthrough by Kurs et al. [11] is called the magnetic
resonance technique. Energy can be wirelessly transferred
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by inexpensive controllable mobile charging vehicles
(MCVs) and can be replenished to proactively meet
application requirements. Xie et al. [12] coined the term
“wireless rechargeable sensor network” (WRSN) based
on this technique. This technique can provide sensor
nodes with steady, controllable, and highly effective
recharging velocity energy. Therefore, the fundamental
problem is to design the charging schedule for nodes in
an energy‐balanced manner. This plays a crucial role in
achieving high charging efficiency.

To address this issue, we investigate an on‐demand
mobile charging strategy in which the node is charged only
when necessary. When the energy is inadequate, the node
sends the charging request to the MCV. The MCV replen-
ishes the energy to the node according to the received
request. We aim to design a novel mobile charging strategy
that is guided by the advantages of existing designs while
minimizing the impacts of their limitations.

The contributions of this work are summarized as
follows:

• To decrease the charging times and shorten the traveling
time of the MCV, we propose a demand-based charging
strategy (DBCS). The energy consumption of nodes in a
WRSN is not balanced. DBCS charges only the emer-
gency node, which can effectively improve the efficiency
of the MCV. The energy utility of DBCS is greater than
nearest-job-next with preemption (NJNP) [13] and first-
come first-served (FCFS) [14] schemes.

• An improved hierarchical clustering method called multi-
point improved K-means (MIKmeans) clustering is
adopted. This method is utilized to construct a distance-
energy core set of each cluster. The communication within
the cluster is improved, and the residual energy of the
nodes is better balanced compared to improved distributed
energy efficient clustering (IDEEC) [15]. For an on-
demand charging strategy, the more balanced the residual
energy of the nodes, the higher the efficiency of the MCV.

• To further increase the efficiency of charging, the
dynamic selection algorithm for charging nodes
(DSACN) was offered to select sensors with critical life-
times. The energy consumption of the node is varied;
therefore, the residual energy is time varied. This new
dynamic threshold algorithm can adapt the time-varied
energy consumption of the node.

• Annealing based on performance and efficiency (SABPE)
is designed to select the traveling tour of the MCV in
each charging round. Thus, both the MCV travel distance
and the charging delay of the sensors are reduced.

This paper is organized as follows. Section 2 briefly
reviews the literature. We introduce our problem statement
in Section 3. In Section 4, the DBCS algorithm is proposed

in detail. Simulations and analysis are given in Section 5.
Last, Section 6 concludes this work.

2 | RELATED WORK

With the progress of wireless energy transfer technology,
prolonging the lifetime of WRSNs has been investigated.
However, this technology is still in its initial stages. Based
on different situations, WRSNs can be categorized as
periodical WRSN [16] and event‐driven WRSN [17].

In a periodical WRSN, it is supposed that the sensors
generate data periodically and that the energy consump-
tions are almost equal. Thus, the sensor needs to be
charged cyclically [16], [18–20]. The MCV periodically
visits and charges the node in the field. To efficiently uti-
lize its charging cycle, the MCV travels the optimized
path along the shortest Hamiltonian cycle. The charging
strategy can be converted into a traveling salesman prob-
lem (TSP) [16]. The periodical charging strategy can be
divided into the single‐node charging strategy and multi‐
node charging strategy [18–20]. In the single‐node charg-
ing strategy, only one MCV is working at a particular
moment, the charging efficiency is low, and the number
of nodes is low.

To increase the charging efficiency, a multi‐node
charging strategy in which several sensors can be charged
at the same time was proposed. In [18], the MCV was
regarded as a mobile base station (BS) with the smallest
enclosing space disk for communication. The work in
[19] modeled the on‐demand charging problem as
scheduling the MCV to charge life‐critical sensors in a
network. In [20], the authors considered the minimum
number of MCV problems in a general 2D network to
keep the network running indefinitely. Most of these
studies assumed that the sensing data and the energy con-
sumption velocity of each sensor were fixed and provided
in advance. However, in terms of realistic scenarios, the
velocity of sensing and energy consumption will vary
over time. A periodical energy replenishment strategy
does not suit actual applications.

Some researchers proposed a charging strategy for
efficient stochastic event captures [17], [21–26]. In [17],
the authors proposed a framework of wireless energy
replenishment based on mobile data gathering by consid-
ering the time‐varying nature of energy replenishment.
Angelopoulos [21] posed the charging decision problem
and proved its complexity. In [22], the objective was to
jointly determine the MCV movement and sensor activa-
tion schedules to maximize the quality of monitoring
(QoM). Dai et al. [23] considered two closely related
subproblems of mobile charging for stochastic event cap-
ture. One was a way to select the node for charging,
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and the other was how to schedule the node's activation
according to its received energy. To deal with multisen-
sor and multi‐event problems, the authors used a
weighted sum method to transform a multi‐objective
problem into general linear programming [24]. In [25],
the authors concentrated on a scenario in which the
MCV visited a selected subset of sensors in a predeter-
mined path and charged and collected data from them
simultaneously. Wang et al. [26] assumed that a mobile
charger followed a random walk on the grid of sensors.
The mobile charger conducted two battery‐aware energy
replenishment strategies to recharge the sensors.

These methods can indeed increase network perfor-
mance. However, the charging of a node is a long process
in a WRSN, and continuous optimization system parameter
combinations are required. The performance of a system is
affected by some uncertainty factors. A time‐varied charg-
ing strategy needs to be established. In this work, we pro-
pose a time‐varied clustering and charging algorithm
DBCS for WRSNs, aiming at enhancing performance by
increasing the energy utility, shortening the journey time,
and decreasing the average charging time.

3 | SYSTEM MODEL

In this section, we introduce the framework of a WRSN, a
sensor energy charging paradigm, and the problem defini-
tion.

3.1 | Framework of WRSN

In the framework of an on‐demand charging WRSN, there is
one maintenance station, one BS, only one MCV, and many
rechargeable sensors, as shown in Figure 1. The mainte-
nance station can meet the charging demand. The BS col-
lects and aggregates the sensing data from sensors and does
not have an energy constraint. After the nodes are deployed,
the location of each node can be determined [27]. A set of
nodes with a random battery capacity is distributed over a
square field with length L. Nodes are grouped into several
clusters based on their position and the residual energy. The
sensor collects data and relays them to the cluster heads.
When the power is lower than the threshold φ, the node will
send a real‐time charging request to the MCV. The request
delivery time is assumed to be negligible when compared
with the MCV's traveling time [28].

3.2 | Energy consumption model

In WRSN, most of the energy is consumed during the
sending and receiving process. In this work, we adopt a
simple energy model to obtain the energy consumption

of a normal node [29]. When sending or receiving a
message with l bits, the energy consumption is shown
in (1).

E ¼ Etxðl; dÞ þ ErxðlÞ ¼ 2� Eelec � lþ ɛamp � d2ij (1)

where Eelec indicates the energy consumption for sending
or receiving each bit; dij denotes the distance between the
sender; and receiver; ɛamp is the energy consumption for
transmitting amplifier. The radio dissipates 50 nJ/b to run
the transmitter or receiver circuitry.

3.3 | Energy charging model

The energy charging model is defined as a Friis free space
model in (2).

PrðdÞ ¼ GtxGrxη

Lp

λ

4πðd þ δÞ
� �2

Ptx (2)

where Gtx is the source antenna gain, Grx is the receiver
antenna gain, η represents the rectifier efficiency, Lp indi-
cates the polarization loss, λ is the wavelength, d is the
charging distance, δ is assigned a value of 0.2316 [8] as
the parameter to adjust the Friis’ free space equation for
short‐distance transmission, and Ptx is the source power of
the MCV.

4 | CHARGING STRATEGY

The charging strategy for the WRSN is developed in this sec-
tion. There are four parts to discuss: the MIKmeans cluster-
ing algorithm, which can balance the load of the network;
DSACN, which selects the emergency charging node to
improve the efficiency of the MCV; SABPE, which takes an

BS

B dAA

C

MCV

dCB

Maintenance station Charging

Data linkCluster head Sensor node MCV route

FIGURE 1 Framework of WRSN
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optimal path planning method for the MCV; and the fact that
the MCV operates on a charge‐on‐demand schedule DBCS.

4.1 | MIKmeans clustering algorithm

We proposed the MIKmeans clustering algorithm based on
the K‐means algorithm [5] to balance the load of the net-
work and to prevent some special nodes from exhausting
their energy quickly. Two improvements were proposed.

4.1.1 | Improve communication model within
cluster

To decrease the relay task of the cluster head, the commu-
nication model within the cluster was improved. First,
nodes group several clusters based on a K‐means algo-
rithm. The node in the cluster will cover a certain area
where the cluster head is located near the center. The mem-
ber node sends the sensing data to the cluster head, and
then the cluster head relays data to the BS. Therefore, there
are some special member nodes that are nearer to the BS
than to the cluster head, such as A in Figure 1. To decrease
the transmission consumption, these special member nodes
communicate with the BS directly (e.g., A in Figure 1).
The common member nodes communicate with the cluster
head directly (e.g., C in Figure 1).

4.1.2 | Improve operation of cluster head

The cluster head is used to relay the communication
between the BS and member nodes. Thus, the velocity of
the energy consumption will be faster than the others. To
balance the load of the cluster head, we design a dynamic
operation. Some special nodes act as cluster heads based
on the residual energy, location, and data volume. The pur-
pose is to balance the energy consumption of the nodes.
Some specific improvements are as follows:

• The node located nearest to the center of the cluster is
chosen as the head. We assume that the radius of the
cluster is r, and there is a concentric circle whose radius
is 0.5r. The node located in a concentric circle is labeled
the candidate cluster head. These nodes will possibly be
the cluster head in the next round.

To balance the load of the WRSN, we put forward the
rotation parameter of the node. The rotation parameter is
composed of three parts: the residual energy, the location,
and the number of times as a cluster head. The rotating
condition of the cluster head is that the residual energy is
less than the threshold, or the mean square value of the
residual energy of the candidate cluster head nodes is less
than the threshold. The rotation parameter is calculated by

(3). The node that has the maximum of the rotation param-
eter will be the cluster head in the next charging round.

RotationðiÞ ¼ α
EiðmÞ

EaverðmÞ
þ β

DaverðmÞ
DiðmÞ þ γ

1
AiðmÞ þ 1

(3)

where m denotes the cluster, Ei(m) is the residual energy of
the ith sensor node, Eaver(m) indicates the average residual
energy of the cluster, Di(m) is the distance between the node
and the center of the cluster, Daver(m) denotes the mean of
Di(m), and Ai(m) indicates the times as the cluster head of
the ith sensor. α; β; γ are the normalized parameters that
represent the importance of the residual energy, location,
and historical contribution, and α ≥ 0; β ≥ 0; γ ≥ 0. α
will be larger when the total residual energy is smaller. Simi-
larly, when the density of a cluster is higher, β will larger.
When fairness is considered, γ will be close to 1. The
dynamic setting of the factor can be seen as the Pareto solu-
tion for a multi‐objective optimization problem [30].

4.2 | Select charging nodes

Although MIKmeans clustering can balance the load, the
energy consumptions of the nodes show tremendous varia-
tions in WRSNs. We only charge the node for which the
residual working time is lower than the threshold. This is the
key to selecting the appropriate threshold. The exact thresh-
old not only can reduce the charging time but can also ensure
the node works all of the time. We propose a dynamic algo-
rithm to ensure the threshold DSACN. DSACN is based on
the minimum residual working time of the node and the
residual working time of the MCV.

4.2.1 | Compute residual working time of
MCV

First, we compute the residual working time of the MCV
according to (4).

durationMCV ¼ ∑
n

i¼1
di�1;i þ dn;0

� ��
vþ ∑

n

i¼1
τi (4)

where di–1,i denotes the distance between two nodes, 0
indicates the maintenance station, v is the travel velocity of
the MCV, and τi denotes the duration of the MCV when it
stays near the ith node. When the residual working time is
longer than durationMCV, the node will ensure it works all
the time [28].

4.2.2 | Compute minimum residual working
time of sensor

The minimum residual working time of the sensor in the
WRSN is computed by (5).

DONG ET AL. | 329



reTmin ¼ min
EiðmÞ
piðmÞ

� �
1 ≤ i ≤ n (5)

where Ei(m) is the residual energy of the ith sensor node in
the mth cluster and pi(m) denotes the power of the ith
node.

reTmin represents the residual working time of the earli-
est possible dead node. When the charging cycle is shorter
than reTmin, no sensors will die. If the residual working
time of the sensor is longer than 2 � reTmin and the
charging cycle is shorter than reTmin, the node in the
WRSN can be sure not to die.

We design a strategy to select the charging node and
record: ChargeRoundk ¼ r0; r1; . . .; rk; . . .; r0f g
where r0 denotes the maintenance station and rk represents
the kth node that needs to be charged. First, in a charging
round, we compute the residual working time of the MCV
and the minimum residual working time of the sensor. The
smaller one will be chosen as the threshold. A sensor is
chosen for which the residual working time is lower than
the threshold. The threshold is dynamic.

4.3 | Plan MCV charging route

When some nodes are selected, the MCV will move near
them and charge them one by one. We take a full
charging strategy for each node because the cost of the
MCV moving is high. Thus, the total moving distance
should be as short as possible to prevent excessive
mobile overhead. The routing planning problem trans-
formed the TSP for the charging nodes. We put forward
SABPE based on the simulated annealing (SA) algorithm
[31] to solve the traversal paths problems of the charg-
ing nodes.

4.3.1 | SA algorithm

The SA algorithm is a local search method that finds its
inspiration in the physical annealing process studied in sta-
tistical mechanics. When a new traversal path P(n) is pro-
duced, the length D(P(n)) should be computed. If
D(P(n)) < D(P(n − 1)), then P(n) becomes the new path;
if not, we accept P(n) by the SA probability and then cool
down. We repeat this process until we meet the end condi-
tion. Then, we output the solution D(P). The SA probabil-
ity can be solved by (6).

pðdEÞ ¼ exp
dE
kbT

� �
(6)

where dE < 0 because it simulates the annealing process, T
is the temperature, kb is the Boltzmann constant, and
0 < pðdEÞ < 1 because dE

�
kbT < 0.

4.3.2 | SABPE algorithm

The SA algorithm is a method for a local optimal solution.
To find the optimal solution faster and out of the local
optimum solution, the SABPE algorithm is proposed. The
solution procedure for SABPE is described in Algorithm 1.

Algorithm 1 SABPE algorithmtgroup1
1: Initialization the coordinate and order of nodes, number of iterations and 

swap nodes, initial temperature, final temperature, cooling coefficient;
2: while 0.01temperature > do
3:   Sensor nodes compute the distance of charging nodes with random 

order;
4:   Exchange pairs of nodes order and compute the new distance;
5:   if tan 0dis ceΔ < then
6:     Accept the new order and save it to the structure;
7:   else if ( ) ( )p temperature p random> then
8:     Accept the new order and save it to the structure;
9:   else

10:     0.951temperature temperature= ; 

11:     if ( ) ( )p temperature p random> then
12:       Accept the new order and save it to the structure;
13:     else
14:       Keep the previous order;
15:     end if
16:   end if
17:  if the iterations times satisfies the reservation then
18:     if distance < shortest distance in structure then
19:       if the result is convergence then
20:         Significantly cooling and get new distance;
21:       else if 5accepttimes ≤ then
22:         Slowly cooling, reset iteration times, return to step 3;
23:       else
24:         Substantial cooling, reset iteration times, return to step 3;
25:     end if
26:     else
27:       Reduce the iteration times;
28:     end if
29:   end if
30: end while
31: Return final order and distance

• Add a stage that is named “elite reserve.” The best solu-
tion in each period is recorded and updated in real time,
which avoids a situation where the poor solution is
accepted in the probability.

• Add the disturbance intensity. The number of exchang-
ing nodes is increased from one to several. Thus, the
intensity of perturbation is increased.

• A reheating process is inserted. To avoid only finding
the local optimum and stagnation, a reheating step is
interspersed during the cooling process.

• To improve the algorithm efficiency, the cooling velocity
is adjusted according to the number of times of accep-
tance.

• After the optimal solution is obtained, the result will be
the initial solution again and the algorithm is iterated for
several steps to ensure that the solution does not change.
This improvement can ensure the result will not fall into
the local optimal.
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Algorithm 1 proceeds as follows. The initialization of
some parameters occurs in Line 1. The basic SA algorithm
is described in lines 5–16. Lines 7–10 realize the reheating
process. In lines 6–12, a better solution is reserved and is
called the elite reserve stage. In line 4, disturbance intensity
is increased. A reheating process is inserted in the program.
Lines 21–25 realize the 4th improvement. In lines 17–29,
the research process is achieved. The SABPE algorithm
can guarantee to find the shortest charging path as soon as
possible. Thus, the charging delay can be effectively
decreased.

4.4 | MCV charging schedule

We propose a DBCS charging schedule to determine the
operation of the MCV. The timer controls the working time
of the MCV when the WRSN operates. The charging
schedule lasts until the MCV returns to the maintenance
station, the timer goes to zero, and the new charging sched-
ule is started.

The status of the MCV can be described by (7–10).

τki qcη ¼ Eoi � Ek
i þ piðtki � tk0 þ τki Þ; (7)

Ek
i ≥ piðtki � tk0Þ; (8)

tki ¼ tk0 þ ∑
i�1

j¼1
τki þ ∑

i

j¼1

dj�1;j

v
; (9)

tkiþ1 ¼ tki þ τki þ
di;iþ1

v
; (10)

where Eoi denotes the original energy of the ith sensor node.
When the WRSN has already worked k charging rounds, the
residual energy of the ith sensor node is Ek

i . pi indicates the
energy consumption rate of the ith sensor node, which is
invariable during charging. τki denotes the duration when the
MCV works for the ith node in the kth charging round, qc
denotes the power of MCV charging, η indicates the effi-
ciency of MCV charging, and dj–1,j denotes the distance
between two nodes; the speed of MCV is v, and the duration
of the MCV recharging is τk0 ¼ τstation.

Equations (7) and (9) indicate that the sum of the resid-
ual energy and replenished energy is equivalent to the
energy consumption of the node in one working round.
Equation (8) indicates the residual energy that can support
the normal operation of the node at the beginning of the
kth charging round. Equation (10) indicates the time of
the MCV charging for the iþ 1 node, which is related to
the time and the duration of the MCV charging for the ith
node and the distance between the two nodes. The charging
schedule of the WRSN is described in Algorithm 2.

Algorithm 2 DBCS charging scheduletgroup1
1: Initialization: o, , , , , , , ,i W W c stationn area E E q q kη τ ; 
2: Set up the WRSN with random distribution;
3: Uses MIKmeans algorithm to cluster the network;
4: Sensors communicate with each other and consume energy;
5: for 1j = to k do
6:   while stationt τ> do

7:     Calculate MCVduration ; 

8:     for 1i = to n do
9:     Collect residual energy and energy consumption;

10:    BS calculate minreT and MCVduration ; 

11:    if minmin(2 , )k
i MCVE reT duartion≤ then

12:    puts sensor and S into ChargeRound; 
13:     end if
14:     end for
15:     use SABPE algorithm to find the shortest distance of ChargeRound;
16:     The nodes in the ChargeRound are recorded;
17:     MCV charges for iN node at k

it t= in new order; 

18:     MCV leaves iN node at k k
i it t τ= + for next one;

19:     MCV returns to S at 
1

arg
S

k k
i

i
t ch eD v τ

=

= + ∑ ; 

20:     0t = ; 
21:   end while
22: end for

The DBCS charging schedule is an on‐demand charging
schedule for the WRSN. The charging round starts when
the MCV is located in the maintenance station. The BS can
calculate the threshold of the residual working time based
on the location, residual energy, and power consumption of
the node. When the residual working time is lower than the
threshold, the node will send a request to the BS. After the
BS makes a path plan, the MCV sets out from the mainte-
nance station and charges the node in turn. When the charg-
ing task is scheduled to end, the MCV returns to the
maintenance station.

5 | SIMULATION RESULTS

In this section, we conduct extensive simulation experi-
ments to evaluate the performance of the WRSN.

5.1 | Simulation setup

As shown in Table 1, we randomly deploy {50, 60, 70, 80,
90, 100} nodes into a 100 m � 100 m square field. The
BS was placed at the center of the field. The BS coordinate
is at (50, 50), and the maintenance station coordinate is at
(0, 0). The environment information, after being captured
by individual nodes, is relayed to the BS. The sensor node
sends a charging request to the BS when the remaining
energy is below the threshold. In our event‐driven simula-
tor, the sensing data is simulated as events occur at random
times and in random locations. Whenever an event occurs
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in the range of the sensor node, the node captures the event
and transmits it to the BS via the constructed route. The
mobile charging process is simulated using C++.

5.2 | Communication topology

Figure 2 shows the communication topology of the WRSN,
which has 50 nodes.

In Figure 2, the star denotes the BS, and the nodes are
grouped into five clusters that are marked by different sym-
bols (square, triple, cross, diamond, and snowflake). The
clusters are grouped according to the MIKmeans algorithm.
The lines in Figure 2 indicate the communication links. In

Figure 2, some special nodes located near the BS will com-
municate with the BS instead of the cluster head.

5.3 | Traveling path of MCV

Figure 3 describes the traveling paths of the MCV in
different charging rounds.

Figure 3A shows the traveling path of the MCV in the
1st charging round. There are only five nodes to be
charged, and each is a cluster head that loads a lot of trans-
fer work. The energy consumption is high. Figure 3B
shows the traveling path of the MCV in the 24th charging
round. As long as the workload becomes heavy, the num-
ber of charging nodes is increased. Because the MIKmeans
algorithm operates in the WRSN, the member nodes act as
the cluster head rotates, and the energy consumption also
increased. The charging queue is expanded. The MCV
need to replenish its energy for more nodes.

TABLE 1 Simulation parameters

Parameters Values

Node number {50, 60, 70, 80, 90, 100}

Field size (m2) 100 × 100

Initial energy (J) (500 + rand(1) × 10)

Amount of transmitting
information (bit)

4,000k

Communication
consumption per bit of node (nJ/bit)

50

MCV speed (m/s) 3

MCV charging efficiency (η) 0.5

MCV moving consumption (J/m) 8

MCV charging power (W) 10

MCV recharging duration (min) 10

α, β, γ {0.6, 0.3, 0.1}
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FIGURE 2 Communication topology of WRSN
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FIGURE 3 Traveling paths of different charging rounds: (A)
traveling path in 1st charging round and (B) traveling path in 24th
charging round
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5.4 | Communication mode

To analyze the communication mode, we selected the resid-
ual energy mean square to characterize the equilibrium
degree of the node residual energy in the WRSN, as shown
in Figure 4. This indicator embodies the deviation degree
of the residual energy of the special node and the average
residual energy of the entire network. The residual energy
mean square value is larger, which means that the deviation
degree of the residual energy of the special node is greater
and the network energy balance is worse.

In Figure 4, the curve of the K‐means algorithm and
IDEEC algorithm is reduced at 900 rounds. This indicates
that there are some nodes that died by these two algorithms
at this point. The K‐means algorithm used the node closest
to the center of the cluster as the cluster head, and the
energy consumption is not balanced. The mean square
value is the largest and grows faster. IDEEC takes in
account the residual energy and the location. The balance
of energy consumption is better than in the K‐means algo-
rithm. The MIKmeans algorithm proposed in this paper
considers multiple factors, and the energy consumption of
the network is the best balanced. When the value of MIK-
means increases slowly, there are no dead nodes, and the
residual energy of the network is balanced.

5.5 | Efficiency of energy

We propose the energy utility as an index of the character
of the efficiency of energy. The definition of energy utility
is the ratio of the moving energy consumption of the MCV
to the replenished energy of the node by the MCV in each
charging round [32]. The calculation method is presented
in (11).

utility ¼ ∑s
i¼1qcτiη

qWDðPÞ : (11)

where qc denotes the power of MCV charging, τi indicates
the duration that the MCV charges for the ith node, η denotes
the efficiency of the MCV charging, qW indicates the MCV
moving consumption, and the total distance of the MCV
moving in a charging round is indicated by D(P). In (11), we
know that the higher value of “utility” means that the MCV
requires more energy to charge the node. Less energy used
to move the MCV indicates better performance of the
WRSN.

Figure 5 is a comparison of the efficiency of energy by
varying the charging round. There are also two typical
comparison strategies (NJNP [13] and FCFS [14]), which
are simulated. By using the FCFS strategy, the charging
path is arranged by the order of the charging request, the
first charging request will respond first, and the latter
request will respond later. By using the NJNP strategy, the
charging path is arranged by the location of nodes that
send the charging demand. The MCV will first charge the
nodes that are nearer to its location. We simulated 50
charging rounds and compared the DBCS strategy, NJNP
strategy, and FCFS strategy, as shown in Figure 5.

It is obvious that the DBCS charging strategy designed in
this paper is the best one. The energy utility of DBCS is
obviously highest during the 50 charging rounds. The FCFS
strategy is to charge the node that sends its request first.
Thus, there are many repeated crossover routes in a charging
round. The MCV will move along various redundant paths.
This results in its energy utility being the worst in Figure 5.
For the NJNP strategy, the nodes located nearest to the MCV
are charged first in each charging round. When nodes decen-
tralize, the effect is better. However, if the charging nodes
are dense, redundant charging paths will easily occur.

R
es

id
ua

l e
ne

rg
y 

m
ea

n 
sq

ua
re

 v
al

ue

0
Network running round

MIKmeans

K means

IDEEC

700

600

500

400

300

200

100

0
200 400 600 800 1,000

FIGURE 4 Residual energy mean square value of algorithms by
varying network running round

0
Charging round

DBCS
NJNP
FCFS

3.5

5 10 5015 20 25 30 35 40 45

3.0

2.5

2.0

1.5

1.0

0.5

En
er

gy
 u

til
ity

 

FIGURE 5 Energy utility by varied charging round

DONG ET AL. | 333



As shown in Figure 3A, there are few nodes that need to
be charged in the beginning, and the differences between the
three strategies are not obvious. With the continuous opera-
tion of the network, in Figure 3B, more and more nodes need
to be charged, and the density also increases. The shortcom-
ing of NJNP and FCFS has been exposed. For DBCS, the
output power and the loss of movement of the MCV are
determined by the MCV itself. By the definition of energy
utility, if the charging time is greater, the number of charging
nodes is higher, the moving distance is shorter, and the
energy utility is higher. Since the MCV runs longer and more
nodes need to be charged in the WRSN, the advantage of the
DBCS strategy is more obvious.

Figure 6 shows a comparison of energy utility by vary-
ing network sizes.

We simulated the DBCS, NJNP, and FCFS strategies by
varying the network size from 50 nodes to 100 nodes. In the
simulation, 10 rounds of charging were taken for each size
of network, and the energy utility averages were compared.
In Figure 6, the energy utility of the NJNP and DBCS strate-
gies rises slowly with an increase in network size. However,
the value of the energy utility and the rising range of the
DBCS strategy are greater than those of the NJNP strategy,
while the energy utility of the FCFS strategy does not
change significantly. The energy utility of the DBCS strat-
egy is the best one. Therefore, the energy utility of the
DBCS strategy proposed in this paper proves the effective-
ness and feasibility of the DBCS strategy for different net-
work sizes.

6 | CONCLUSION

The WRSN, which introduces wireless energy transmission
technology, is a brand‐new approach to solving the WSN
energy problem. To make WRSN operate in the long term,

it is extremely important to design and study the charging
program. We proposed a new on‐demand charging strategy
for WRSNs by ensuring the communication mode, choos-
ing the charging nodes, optimizing the charging path, and
ensuring the charging strategy in this paper. First, since the
energy consumption characteristics of on‐demand WRSNs
are uneven, we designed the MIKmeans algorithm to group
nodes and communicate in order to balance the energy con-
sumption in a WRSN.

Then, according to the relationship between the MCV
working time and the node minimum residual working
time, we put forward a new algorithm (DSACN) to select
the charging nodes. Next, we determined the shortest
charging path and the charging time per round by the
SABPE algorithm. Last, we proposed the DBCS algorithm
to increase the efficiency of the MCV. To evaluate the per-
formance of the charging strategy, we simulated and com-
pared several typical charging strategies. We concluded
that the on‐demand charging strategy can obtain a better
energy balance and higher charging energy utility than
other charging strategies for WRSNs.
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