• Title/Summary/Keyword: Dynamic weights

Search Result 230, Processing Time 0.028 seconds

Face Detection through Implementation of adaptive Saliency map (적응적인 Saliency map 모델 구현을 통한 얼굴 검출)

  • Kim, Gi-Jung;Han, Yeong-Jun;Han, Hyeon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.153-156
    • /
    • 2007
  • 인간의 시각 시스템은 선택적 주의 집중에 의해 시각 수용체로 도달되는 많은 물체들 중에서 필요한 정보만을 추출하여 원하는 작업을 수행한다. Itti와 Koch는 시각적 주의를 제어할 수 있는, 신경계를 모방한 계산적 모델을 제안하였으나 조명환경에 고정적인 saliency map을 구성하였다. 따라서, 본 논문에서는 영상에서 ROI(region of interest)을 탐지하기 위한 조명환경에 적응적인 saliency map 모델을 구성하는 기법을 제시한다. 변화하는 환경에서 원하는 특징을 부각시키기 위하여 상황에 적응적인 동적 가중치를 부여한다. 동적 가중치는 conspicuity map에 S.K. Chang이 제안한 PIM(Picture Information Measure)을 적용시켜 정보량을 측정한 후, 이에 따라 정규화된 값을 부여함으로써 구현한다. 제안하는 조명환경에 강인한 적응적인 saliency map 모델 구현의 성능을 얼굴검출 실험을 통하여 검증하였다.

  • PDF

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Seo, Sang-Wook;Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the enviromuent. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

Optimization of Aerospace Structures using Resealed Simulated Annealing (Rescaled Simulated Annealing에 의한 항공우주 구조물의 최적설계)

  • Ji, Sang-Hyun;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.522-527
    • /
    • 2004
  • Resealed Simulated Annealing (RSA) has been devised for improving the disadvantage of Simulated Annealing (SA) which require tremendous amount of computation time. RSA and SA have been for optimization of satellite structures and for comparison of results from two algorithms. As a practical application, a satellite structure is optimized by the two algorithms. Weights of satellite upper platform and propulsion module are minimized. MSC/NASTRAN is used for the static and dynamic analysis. The optimization results of the RSA are compared with results of the classical SA. The numbers of optimization iterations could be effectively reduced by the RSA.

  • PDF

A on-line learning algorithm for recurrent neural networks using variational method (변분법을 이용한 재귀신경망의 온라인 학습)

  • Oh, Oh, Won-Geun;Suh, Suh, Byung-Suhl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 1996
  • In this paper we suggest a general purpose RNN training algorithm which is derived on the optimal control concepts and variational methods. First, learning is regared as an optimal control problem, then using the variational methods we obtain optimal weights which are given by a two-point boundary-value problem. Finally, the modified gradient descent algorithm is applied to RNN for on-line training. This algorithm is intended to be used on learning complex dynamic mappings between time varing I/O data. It is useful for nonlinear control, identification, and signal processing application of RNN because its storage requirement is not high and on-line learning is possible. Simulation results for a nonlinear plant identification are illustrated.

  • PDF

Robust Adaptive Neural Network Controller with Dynamic Structure for Nonaffine Nolinear Systems (불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 적응 신경망 제어기 설계)

  • Park, Jang-Hyeon;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.647-655
    • /
    • 2001
  • In adaptive neuro-control, neural networks are used to approximate unknown plant nonlinearities. Until now, most of the studies in the field of controller design for nonlinear system using neural network considers the affine system with fixed number of neurons. This paper considers nonaffine nonlinear systems and on-line variation of the number of neurons. A control law and adaptive laws for neural network weights are established so that the whole system is stable in the sense of Lyapunov. In addition, at the expense of th input, tracking error converges to the arbitrary small neighborhood of the origin. The efficiency of the proposed scheme is shown through simulations ofa simple nonaffine nonlinear system.

  • PDF

Implementation of Image Adaptive Map (적응적인 Saliency Map 모델 구현)

  • Park, Sang-Bum;Kim, Ki-Joong;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.131-139
    • /
    • 2008
  • This paper presents a new saliency map which is constructed by providing dynamic weights on individual features in an input image to search ROI(Region Of Interest) or FOA(Focus Of Attention). To construct a saliency map on there is no a priori information, three feature-maps are constructed first which emphasize orientation, color, and intensity of individual pixels, respectively. From feature-maps, conspicuity maps are generated by using the It's algorithm and their information quantities are measured in terms of entropy. Final saliency map is constructed by summing the conspicuity maps weighted with their individual entropies. The prominency of the proposed algorithm has been proved by showing that the ROIs detected by the proposed algorithm in ten different images are similar with those selected by one-hundred person's naked eyes.

Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control using Gradient Method (구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화)

  • 강영규;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.684-688
    • /
    • 1998
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping. It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing tie SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

Free Vibrations of Ocean Cables under Currents (조류력을 받는 해양케이블의 자유진동해석)

  • 김문영;김남일;윤종윤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.231-237
    • /
    • 1999
  • A geometric non-linear finite element formulation of spatial ocean cable under currents is presented using multiple noded curved cable elements. Tangent stiffness and mass matrices for the isoparametric cable ele¬ment are derived and the initial equilibrium state of ocean cable subjected to self-weights, buoyancy, and current as well as support motions is determined using the load incremental method. Free vibration analysis of ocean cables is performed based on the initial equilibrium configuration. Numerical examples are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate dynamic characteristics of ocean cables.

  • PDF

Correlation Propagation Neural Networks for Safe sensing of Faulty Insulator in Power Transmission Line (송전선로 노화애자의 안전 감지를 위한 상관전파신경망)

  • Kim, Jong-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.511-515
    • /
    • 2009
  • For detecting of the faulty insulator, Correlation Propagation Neural Networks(CPNN) has been proposed. Faulty insulator is reduced the rate of insulation extremely, and taken the results dirty and injured. It is necessary to detect the faulty insulator and exchange the new one. And thus, we have designed the CPNN to be detected that insulators by the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. 1-D CPNN hardware has been implemented with general purpose. Experiments with static and dynamic signals have been done upon the CPNN hardware. Through the results of simulation experiments, we define the ability of real-time detecting the faulty insulators.

Correlation Propagation Neural Networks for processing On-line Interpolation of Multi-dimention Information (임의의 다차원 정보의 온라인 전송을 위한 상관기법전파신경망)

  • Kim, Jong-Man;Kim, Won-Sop
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.83-87
    • /
    • 2007
  • Correlation Propagation Neural Networks is proposed for On-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D CPNN hardware has been implemented with general purpose analog ICs to test the interpolation capability of the proposed neural networks. Experiments with static and dynamic signals have been done upon the CPNN hardware.

  • PDF