• Title/Summary/Keyword: Dynamic voltage stability

Search Result 169, Processing Time 0.026 seconds

Study on Capacity Design of Active Phase Controller for Distribution Line Reconfiguration (배전선로 재구성을 위한 능동위상제어기의 용량 선정 연구)

  • Jeong, Da-Woom;Kim, Soo-Yeon;Park, Sung-Jun;Kim, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.369-375
    • /
    • 2020
  • Distribution energy resources have been increasing in recent years. However, output power is limited for distribution network stability. This study proposes an active distribution network that can reconfigure distribution lines by using an active phase controller. A conventional distribution network has a fixed structure, whereas an active distribution network has a variable structure. Therefore, the latter can increase the output power of distribution energy resources and decrease the overload of distribution line facilities. An active phase controller has two operation modes for minimizing circulating current during dynamic reconfiguration. In this study, voltage and current control algorithms are proposed for active phase controllers. The simulation of the proposed methods for active phase controllers is performed using PSIM software.

An Adaptive Maximum Power Point Tracking Scheme Based on a Variable Scaling Factor for Photovoltaic Systems (태양광 시스템을 위한 가변 조정계수 기반의 적응형 MPPT 제어 기법)

  • Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok;Lim, Chun-Ho;Kim, Woo-Chull
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.423-430
    • /
    • 2012
  • An adaptive maximum power point tracking (MPPT) scheme employing a variable scaling factor is presented. A MPPT control loop was constructed analytically and the magnitude variation in the MPPT loop gain according to the operating point of the PV array was identified due to the nonlinear characteristics of the PV array output. To make the crossover frequency of the MPPT loop gain consistent, the variable scaling factor was determined using an approximate curve-fitted polynomial equation about linear expression of the error. Therefore, a desirable dynamic response and the stability of the MPPT scheme were maintained across the entire MPPT voltage range. The simulation and experimental results obtained from a 3 KW rated prototype demonstrated the effectiveness of the proposed MPPT scheme.

A Design of Optimal Fuzzy-PI Controller to Improve System Stability of Power System with Static VAR Compensator (SVC를 포함한 전력시스템의 안정도 향상을 위한 최적 퍼지-PI 제어기의 설계)

  • Kim, Hai-Jai;Joo, Seok-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.122-128
    • /
    • 2004
  • This paper presents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors(TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be based on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and applied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.

Passivity-Based Control System of Permanent Magnet Synchronous Motors Based on Quasi-Z Source Matrix Converter

  • Cheng, Qiming;Wei, Lin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1527-1535
    • /
    • 2019
  • Because of the shortcomings of the PID controllers and traditional drive systems of permanent magnet synchronous motors (PMSMs), a PMSM passivity-based control (PBC) drive system based on a quasi-Z source matrix converter (QZMC) is proposed in this paper. The traditional matrix converter is a buck converter with a maximum voltage transmission ratio of only 0.866, which limits the performance of the driven motor. Therefore, in this paper a quasi-Z source circuit is added to the input side of the two-stage matrix converter (TSMC) and its working principle has also been verified. In addition, the controller of the speed loop and current loop in the conventional vector control of a PMSM is a PID controller. The PID controller has the problem since its parameters are difficult to adjust and its anti-interference capability is limited. As a result, a port controlled dissipative Hamiltonian model (PCHD) of a PMSM is established. Thereafter a passivity-based controller based on the interconnection and damping assignment (IDA) of a QZMC-PMSM is designed, and the stability of the equilibrium point is theoretically verified. Simulation and experimental results show that the designed PBC control system of a PMSM based on a QZMC can make the PMSM run stably at the rated speed. In addition, the system has strong robustness, as well as good dynamic and static performances.

New Backstepping-DSOGI hybrid control applied to a Smart-Grid Photovoltaic System

  • Nebili, Salim;Benabdallah, Ibrahim;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • In order to overcome the power fluctuation issues in photovoltaic (PV) smart grid-connected systems and the inverter nonlinearity model problem, an adaptive backstepping command-filter and a double second order generalized Integrators (DSOGI) controller are designed in order to tune the AC current and the DC-link voltage from the DC side. Firstly, we propose to present the filter mathematical model throughout the PV system, at that juncture the backstepping control law is applied in order to control it, Moreover the command filter is bounded to the controller aiming to exclude the backstepping controller differential increase. Additionally, The adaptive law uses Lyapunov stability criterion. Its task is to estimate the uncertain parameters in the smart grid-connected inverter. A DSOGI is added to stabilize the grid currents and eliminate undesirable harmonics meanwhile feeding maximum power generated from PV to the point of common coupling (PCC). Then, guaranteeing a dynamic effective response even under very unbalanced loads and/or intermittent climate changes. Finally, the simulation results will be established using MATLAB/SIMULINK proving that the presented approach can control surely the smart grid-connected system.

Dynamic Model Based Ratio Calculation of Equivalent Reactance and Resistance of the Bulk Power Systems (동적모델을 이용한 대규모 전력계통의 등가 리액턴스와 저항 비율(X/R) 계산)

  • Kook, Kyung-Soo;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2739-2746
    • /
    • 2011
  • This paper proposes the method for more effectively calculating X/R which is the ratio of equivalent reactance(X) and resistance(R) of the bulk power system and analyses the characteristic of X/R values by applying the proposed method to the real bulk power systems. X/R is used to determine the rating of the relay in the bulk power systems and its value has been accepted to be big enough to ignore the equivalent resistance of the bulk power systems. However, X/R is calculated as a big number when only the upper transformer and transmission line are considered. The correct approach to calculating X/R needs to consider all the parameters including generators, transformers, lines and loads. This paper calculates X/R of the bulk power systems using dynamic models which have been used to analyse the power system stability. The effectiveness of the proposed method is verified by applying it to the test system and X/R values of the real bulk power systems are analyzed. In addition, the dependence of X/R on the closeness of its calculating locations to the generator is verified by using the marginal loss factor which has been used in the electricity market.

A 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC Based on Low-Power Composite Switching (저전력 복합 스위칭 기반의 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC)

  • Shin, Hee-Wook;Jeong, Jong-Min;An, Tai-Ji;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.27-38
    • /
    • 2016
  • This work proposes a 12b 30MS/s 0.18um CMOS SAR ADC based on low-power composite switching with an active die area of $0.16mm^2$. The proposed composite switching employs the conventional $V_{CM}$-based switching and monotonic switching sequences while minimizing the switching power consumption of a DAC and the dynamic offset to constrain a linearity of the SAR ADC. Two equally-divided capacitors topology and the reference scaling are employed to implement the $V_{CM}$-based switching effectively and match an input signal range with a reference voltage range in the proposed C-R hybrid DAC. The techniques also simplify the overall circuits and reduce the total number of unit capacitors up to 64 in the fully differential version of the prototype 12b ADC. Meanwhile, the SAR logic block of the proposed SAR ADC employs a simple latch-type register rather than a D flip-flop-based register not only to improve the speed and stability of the SAR operation but also to reduce the area and power consumption by driving reference switches in the DAC directly without any decoder. The measured DNL and INL of the prototype ADC in a 0.18um CMOS are within 0.85LSB and 2.53LSB, respectively. The ADC shows a maximum SNDR of a 59.33dB and a maximum SFDR of 69.83dB at 30MS/s. The ADC consumes 2.25mW at a 1.8V supply voltage.

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.

Manufacture of Portable Inflatable Kayak Using Ultra High Pressure Drop Stitch (초고압 공간지를 이용한 포터블 인플레터블 카약 제작)

  • Park, Chan-Hong;Park, Byeong-Ho;Park, Jong-Dae;Seong, Hyeon-Kyeong;Lim, Lee-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.551-557
    • /
    • 2013
  • In this paper, we manufactured portable inflatable kayak using ultra high pressure drop stitch. by improving inflatable kayaks' performance with a design using the extra-high-voltage special space paper, they were manufactured to go near to performance of hard shell kayaks. The kayaks were manufactured having all merits of the performance of hard shell kayaks and functionality and portability of the inflatable kayaks, and through performance evaluation of test products, the performance was compared with previous hard shell kayaks. About 6 knot of target speed in the verification result of resistance performance, the developed kayak was more excellent than the HOBIE-KONA kayak by 12.33%. In case of same displacement in a result of inclination test, the centroid of the developed kayak was less distributed by 22.7% than the HOBIE-KONA kayak, based on the bottoms of the ships. This makes the difference for righting arm (GZ) lessened to some degree because the developed kayak is lower than the HOBIE-KONA kayak in the centroid. In the dynamic stability of ship bodies, the HOBIE-KONA kayak showed a little excellent performance. However, in rudder force and resistance factor, the developed kayak was more outstanding than the HOBIE-KONA kayak.