• Title/Summary/Keyword: Dynamic viscosity

Search Result 324, Processing Time 0.025 seconds

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials (반고형 식품류의 정상유동특성 및 동적 점탄성)

  • 송기원;장갑식
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • Using a Rheometrics Fluids Spectrometer(RFS II), the steady shear flow and the small-amplitude dynamic viscoelastic properties of three kinds of semi-solid food materials(mayonnaise, tomato ketchup, and wasabi) have been measured over a wide range of shear rates and angular frequencies. The shear rate dependence of steady flow behavior and the angular frequency dependence of dynamic viscoelastic behavior were reported from the experimentally measured data. In addition, some viscoplastic flow models with a yield stress term were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was also examined in detail. Furthermore, the correlations between steady shear flow(nonlinear behavior) and dynamic viscoelastic(linear behavior)properties were discussed using the modified power-law flow equations. Main results obtained from this study can be summarized as follows : (1) Semi-solid food materials are regarded as viscoplastic fluids having a finite magnitude of yield stress, and their flow behavior shows shear-thinning characteristics, exhibiting a decrease in steady flow viscosity with increasing shear rate. (2) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable to describe the steady flow behavior of semi-solid food materials. Among these models, the Heinz-Casson model has the best validity. (3) Semi-solid food materials show a stronger shear-thinning behavior at shear rate region higher than a critical shear rate where a more progressive structure breakdown takes place. (4) Both the storage and loss moduli are increased with increasing angular frequency, but they have a slight dependence on angular frequency. The elastic behavior is dominant to the viscous behavior over a wide range of angular frequencies. (5) All of the steady flow, dynamic, and complex viscosities are well satisfied with the power-law model behavior. The relationships between steady shear flow and dynamic viscoelastic properties can well be described by the modified forms of the power-law flow equations.

  • PDF

Preparation of Hydroxypropyl Methyl Cellulose with Controlled Solubility Rate by Surface Treatment Reaction (표면처리반응에 의한 용해속도조절용 Hydroxypropyl Methyl Cellulose의 제조)

  • Lee, Moo-Jin;Shin, Young-Jo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.581-585
    • /
    • 1999
  • The surface treated hydroxypropyl methylcellulose(HPMC) which could adjust the soluble time was synthesized when 40 wt % glyoxal solution and $KH_2PO_4$ were sprayed and reacted. And also, the solution dynamic at different ratios of two adding agents were identified If the surface of HPMC was treated with only glyoxal, the dispersion characteristics at different ratios of two adding agents were identified If the surface of HPMC was treated with only glyoxal, the dispersion was observed in the neutral solution and the viscosity was increased after directly dissolved as the solution become alkali condition. But the fine-powder type of HPMC which reacted with glyoxal and $KH_2PO_4$ was dispersed regardless of pH of solution and observed that it was dissolved and its viscosity increased after elapsing some time. With increasing amount of glyoxal and $KH_2PO_4$, the soluble time was delayed. The reaction condition was about 60 min at $75{\sim}85^{\circ}C$. Especially, the removal process of organic solvent after reaction was not required due to reaction under water solution without organic during glyoxal and $KH_2PO_4$ treatment. And also, the HPMC which could adjust the soluble rate in water or organic solvent by changing the degree of substitution of HPMC was synthesized.

  • PDF

The Monitoring Study of Exchange Cycle of Automatic Transmission Fluid (자동변속기유(ATF) 교환주기 모니터링 연구)

  • Lim, Young-Kwan;Jung, Choong-Sub;Lee, Jeong-Min;Han, Kwan-Wook;Na, Byung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.274-278
    • /
    • 2013
  • Automatic transmission fluid (ATF) is used as an automatic transmission in the vehicle or as a characterized fluid for automatic transmission. Recently, vehicle manufacturers usually guarantee for changing fluids over 80000~100000 km mileage or no exchange. However, most drivers usually change ATF below every 50000 km driving distance when driving in Republic of Korea according to a survey from the Korea Institute of Petroleum Management which can cause both a serious environmental contamination by the used ATF and an increase in the cost of driving. In this study, various physical properties such as flash point, pour point, kinematic viscosity, dynamic viscosity at low temperature, total acid number and four-ball test were investigated for both fresh ATF and used ATF after the actual vehicle driving distance of 50000 km and 100000 km. It was shown that most physical properties were suitable for the specification of ATF, but the foam characteristics of the used oil after running 100000 km was unsuitable for the specification of fresh ATF. Therefore, the exchange cycle of ATF every 80000~100000 km driving distance is recommended considering great positive contributions to preventing environmental pollution and reducing driving cost.

Synthesis of Functional Copolyester, its Blend with PET, and Properties of Carbon Black Dry Color (기능성 폴리에스테르 공중합체의 합성, PET와의 블렌드 및 카본 블랙 Dry Color의 물성)

  • Park, Lee Soon;Lee, Dong Chan;Kim, Jin Kon;Huh, Wan Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.496-503
    • /
    • 1996
  • Aromatic and aliphatic copolyesters for the dispersing agent were synthesized by two stage reaction, esterification and polycondensation. Copolyesters were blended with PET in the melt state and their thermal and rheological properties were investigated. From GPC analysis Mn's and Mw's of copolyesters were about 30000 and 65000g/mol, respectively. From DSC experiment copolyesters had melting range of $90{\sim}150^{\circ}C$. Copolymer composition was in good agreement with comonomer feed ratio from $^1H$-NMR analysis. Copolyesters and SPA (standard sample) were blended with PET in the melt state. From DSC experiment, copolyesters and SPA were miscible with PET. From the dynamic melt viscosity experiment, melt viscosity of blended sample was increased as the content of aromatic copolyester was increased, while it was decreased as the content of aliphatic and SPA were increased. As for volume resistivity of dry color containing carbon black and copolyesters with dispersing time, aromatic copolyester showed highest value. It was conferred from this result that aromatic copolyester was the best dispersing agent for carbon black in PET resin.

  • PDF

Study on the Non-isothermal Crystallization Kinetics of Branched Polypropylene (분지형 폴리프로필렌의 비등온결정화 거동 연구)

  • Yoon, Kyung-Hwa;Shin, Dong-Yup;Kim, Youn-Cheol
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.245-250
    • /
    • 2012
  • Branched polypropylenes (PP) with long chain branch were prepared by solid state reaction with three different branching agent of 0.3 wt% content. The chemical structures, non-isothermal crystallization behavior and complex viscosity of the branched PP were investigated by FTIR, DSC, optical microscope, and dynamic rheological measurement. The chemical structure of the branched PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no distinct change in melting temperature in case of PP-D-0-3 and PP-F-0-3, but PP-H-0-3 indicated a decrease in melting temperature. The decrease in melting temperature was interpreted by the fact that the degradation reaction of PP was more dominant than branched reaction, and confirmed by a decrease in complex viscosity. The non-isothermal crystallization behavior of the branched PP was analyzed using by Avrami equation. The Avrami exponent of PP was 3, and the values of the branched PP with DVB and FS were below 3. The activation energy of PP calculated by Kissinger method was 25 kJ/mol, and there were no big difference in activation energies of the branched PPs compared to PP.

Fabrication and Characterization of Zirconia-Alumina Composites by Organic-Inorganic Solution Technique (유기물-무기물 용액법을 이용한 지르코니아-알루미나 복합체의 제조 및 특성)

  • Kim, Youn Cheol;Bang, Moon-Soo;Lee, Sang Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.628-634
    • /
    • 2005
  • Zirconia-alumina polymer precursor was prepared from zirconium acetylacetonate (ZA). paluminium nitrate (AN), polyethylene glycol (PEG), and ethyl alcohol via an organic-inorganic solution technique. The thermal properties and viscosity of the polymer precursor were measured by differential scanning calorimetry (DSC), thermograbimetric analyzer (TGA), and dynamic viscometer. The vigorous exothermic reaction with volume expansion occurred at $140^{\circ}C$. The volume expansion was caused by abrupt decomposition of the organic group in metal compounds and the metal ions-PEG reaction. The evidences for these reactions were confirmed by FT-IR and $^{13}C$ solid NMR results. The peak intensity at N-O, O-H and C=C decreased with increasing temperature. This indicated that the decomposition of metal compounds and the metal ions-PEG reaction occurred during the vigorous exothermic reaction. At $800^{\circ}C$ for 2 h, the porous powders transformed to the crystalline $ZrO_2-Al_2O_3$ composites.

Study on the Physical and Rheological Properties of Nylon66/MWCNT Composites (나일론66/MWCNT 복합체 물성 및 유변학적 특성 연구)

  • Kim, Do Eui;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.214-218
    • /
    • 2013
  • Nylon66/multi-walled carbon nano tube (MWCNT) composites were fabricated by twin screw extruder. The contents of MWCNT were 1, 3, 5, and 7 wt%. Thermal properties, dispersion, rheological and impact properties were measured by DSC, TGA, X-ray diffraction (XRD), SEM, Dynamic rheometer, and Izod impact tester. The effect of MWCNT on the non-isothermal crystallization of Nylon66 was confirmed by DSC. The complex viscosity at low frequency and the shear thinning tendency of the composites increased with MWCNT content. An increase in the elasticity was confirmed from the decrease in the slop of G'-G" plot. Izod impact strengths of the composites were analyzed as a measure of mechanical properties, which indicated that the composites exhibit a 60% enhancement for the impact strength when 3 wt% MWCNT was added. The dispersion of MWCNT within Nylon66/MWCNT composites was also checked by SEM.

Rheological Properties and Cure Kinetics of Cycloaliphatic/DGEBA Epoxy Blend System Initiated by Cationic Latent Curing Agent (잠재성 경화제를 이용한 Cycloaliphatic/DGEBA계 에폭시 블렌드 시스템의 유변학적 특성 및 경화 동력학)

  • 곽근호;박수진;이재락;김영근
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.227-233
    • /
    • 1998
  • The effects of 1 mol% N-benzylpyrazinium hexafluoroantimonate(BPH) as a thermal latent initiator and blend compositions composed of cycloaliphatic and DGEBA epoxies were investigated in the rheological properties and cure kinetics. Latent properties were performed by measurement of the conversion as a function of reaction time using isothermal DSC at $150^{\circ}C$ and $50^{\circ}C$ Rheological properties of the blend systems were investigated in terms of isothermal experiments using a rheometer. The gelation time was obtained from the evaluation of storage modulus (G'), loss modulus (G") and damping factor (tan$\delta$)). Cross-linking activation energy ($E_c$) was also determined from the Arrhenius equation based on gel time and curing temperature. As a result, the gel time and cross-linking activation energy increased with increasing DGEBA composition. The cure activation energies ($E_a$) were obtained by Kissinger method using dynamic DSC thermograms. In this work, the cure activation energy decreased with increasing CAE concentration, which might be resulted from the short repeat units, simple side-groups and viscosity of reaction media.edia.

  • PDF

Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing (씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.