• Title/Summary/Keyword: Dynamic trunk motion

Search Result 31, Processing Time 0.028 seconds

Development of Quantitative Diagnostic Technique for Low-Back Pain Patients via Three Dimensional Dynamic Motion Analysis (3차원 동작분석에 의한 요통환자의 정량적 진단기법 개발에 관한 연구)

  • Kim, Jeong-Ryong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.11-23
    • /
    • 1998
  • Dynamic motion difference between normal subjects and low-back pain (LBP) patients has been investigated in terms of kinematic variables such as range of motion, velocity and acceleration of the back and hip. Ten healthy subjects and ten LBP patients were recruited in this study. Electro-goniometer such as Lumbar Motion Monitor and Hip Monitor have been used for quantitative measurement of the trunk motion during repetitive flexion and extension for ten seconds. Results indicated that the velocity and acceleration of the back and hip were important parameters to quantitatively identify LBP patients. The consistency of cyclic trunk motion and the relationship between the back and hip were measured in terms of Variance Ratio and Phase Angle in order to accurately assess the motion characteristics of LBP patients. In particular, the hip motion has been proven to be a very important factor in describing the kinematics of damaged lower back. The functional evaluation technique suggested in this study will be a tool to assist physicians for an accurate diagnosis and timely rehabilitation along with current image diagnosis techniques.

  • PDF

Quantitative Study of Dynamic Modtion Difference Between Normal Subjents and Low-Back Pain Patients (정상인과 요통환자의 동적 움직임의 차이에 관한 정량적 연구)

  • 김정룡
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.301-306
    • /
    • 1996
  • Different patterns of dynamic trunk performance between normal subjects and low-back pain (LBP) patients have been investigated. Ten healthy subjects and ten LBP patients were recruited for this study. An experiment was designed to quantify the dynamic motion of the back and hip during repetitive flexion/extension of the trunk. The angular velocity, angular acceleration and the phase angle difference between the hip and back were recorded as dependent measures via electro- mechanical devices. Results showed the significant differences in the velocity and acceleration of the hip and back and the phase angle between normal subjects and LBP patients. The consistency of kinematic variables during motion cycles was also examined in terms of variance ratio (Hershler and Milner, 1978). Based on the results of the study, these quantifiable variables such as trunk kinematics and hip-spine coordination can be developed as a medical tool to identify LBP patients in addition to current imaging techniques.

  • PDF

Effects of dynamic myofascial release on trunk mobility and standing balance in persons with chronic nonspecific low back pain

  • Lee, Dong-Woo;Shin, Hwa-Kyung;Kim, Kwang-Su
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.2
    • /
    • pp.74-78
    • /
    • 2019
  • Objective: Myofascial release (MFR) is used to restore tissue extensibility of the fascia tissue and is considered to be useful in a number of clinical settings, such as low back pain (LBP). Dynamic myofascial release (DMFR) is the manual therapy, which combined the conventional MFR with the joint mobilization. The purpose of this study was to investigate the effects of the DMFR on trunk mobility, and furthermore, whether the increase of trunk mobility can carry over the improvement of dynamic standing balance in persons with chronic nonspecific LBP. Design: Randomized controlled trial. Methods: Thirty persons with chronic non-specific LBP participated in the study and were randomly assigned to the DMFR group (n=15) or the control group (n=15). DMFR was performed for two sessions (15 minutes/session) per week for four weeks for the treatment group. Both the DMFR and control groups were allowed to perform low-intensity physical activities during the treatment period. The Modified-modified $Sch{\ddot{o}}ber$ test (MMST) for trunk mobility and the Functional Reach Test (FRT) for dynamic standing balance were measured before and after the treatment period in both the DMFR group and the control group. Results: The MMST value of DMFR group increased significantly in all trunk range of motion (flexion, extension, lateral flexion, and rotation) after treatment, compared with the control group (p<0.05). Additionally, the FRT value of the DMFR group improved significantly after treatment, compared with the control group (p<0.05). Conclusions: We suggest that DMFR have a positive effect on trunk mobility and standing balance in persons with chronic LBP.

The Effect of Action on the Balance and the Trunk Control Ability in the Sit Position of Chronic Stroke Patients (동작관찰훈련이 만성 뇌졸중 환자의 앉은 자세에서 균형과 몸통조절능력에 미치는 영향)

  • Hwang, Junhyun;Lee, Yangjin;Joo, Mincheol;Kim, Seongryeol
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • Purpose : To find out how action observation training for chronic stroke patients affects their balance and body control abilities in the posture seated in the rehabilitation of stroke. Methods : This study was conducted on 30 subjects who were diagnosed with stroke. The group conducted motion observation training through video clips, while the control group only conducted physical training, and the general physical therapy was performed equally by both counties. The static balance was measured using Biorescue and the dynamic balance was measured using Modified Functional Reach Test (MFRT), Postural Assessment Scale for Stroke, and Trunk Impairment Scale. Results : Static balance showed statistically significant difference in foot pressure (p<.05) as a result of comparison between pre and post exercise training. Dynamic balance was statistically significant (p>.05) as a result of comparing pre and post differences using modified functional reach test. The trunk control ability was statistically significant (p>.001). Comparison between the results of before and after motion observation training showed a statistically significant difference. Conclusion: This study confirmed that exercise training in sitting position was effective for static, dynamic balance ability and trunk control ability of hemiplegic patients due to stroke. These results suggest that the use of motion monitoring in stroke patients may have a positive impact on the diversity and function of rehabilitation.

Evaluation of the Effect of Location and Direction of the Scoliotic Curve on Postural Balance of Patients with Idiopathic Scoliosis (특발성 척추측만증 환자의 척추 만곡 위치와 방향이 자세 균형에 미치는 영향성 평가)

  • Jung, Ji-Yong;Kim, Jung-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.341-348
    • /
    • 2017
  • This study examined the effects of the location and direction of the scolioti curve on postural balance in patients with idiopathic scoliosis. Fifteen subjects were divided into three groups: right thoracic curve group, left lumbar curve group, and double curve group. The dynamic trunk motion (angle variation in the lumbar, thoracolumbar, lower thoracic and upper thoracic region) and plantar pressure distribution (maximum force and peak pressure) were assessed using an ultrasound-based motion analysis system and Emed-at platform system. From the results, it was confirmed that patients with idiopathic scoliosis showed postural imbalance with an increased angle and pressure asymmetry according to the location and direction of the scoliotic curve for dynamic trunk motion and plantar pressure distribution. In addition, there were differences in the postural balance pattern between the single curve and double curve groups. Further studies for developing a rehabilitation training device will be conducted to improve the postural control ability and trunk balance as well as treat scoliosis based on the results of this study.

Dynamic Walking Planning and Inverse Dynamic Analysis of Biped Robot (이족로봇의 동적 보행계획과 역동역학 해석)

  • Park, In-Gyu;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.133-144
    • /
    • 2000
  • The dynamic walking planning and the inverse dynamics of the biped robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian corrdinates then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot the holonomic constraints are added or deleted on the equations of motion. the number of these constraints can be changed by types of walking patterns with three modes. In order for the dynamic walking to be stabilizable optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

Dynamic Walking and Inverse Dynamic Analysis of Biped Walking Robot (이족보행로봇의 동적보행과 역동역학 해석)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.548-555
    • /
    • 2000
  • The dynamic walking and the inverse dynamics of the biped walking robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian coordinates, then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot, the holonomic constraints are added or deleted on the equations of motion. The number of these constraints can be changed by types of walking pattern with three modes. In order for the dynamic walking to be stabilizable, optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

Kinematic Analysis of Dynamic Stability Toward the Pelvis-spine Distortion during Running (달리기 시 체간의 골반-척추구조변형이 동적안정성에 미치는 연구)

  • Park, Gu-Tae;Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.369-376
    • /
    • 2013
  • The purposes of this study were to assess dynamic stability toward pelvis-spine column distortion during running and to compare the typical three-dimensional angular kinematics of the trunk motion; cervical, thoracic, lumbar segment spine and the pelvis from the multi-segmental spine model between exercise group and non-exercise group. Subjects were recruited as exercise healthy women on regular basis (group A, n=10) and non-exercise idiopathic scoliosis women (group B, n=10). Data was collected by using a vicon motion capture system (MX-T40, UK). The pelvis, spine segments column and lower limbs analysiaed through the 3D kinematic angular ROM pattern. There were significant differences in the time-space variables, the rotation motion of knee joint in lower limbs and the pelvis variables; obliquity in side bending, inter/outer rotation in twisting during running leg movement. There were significant differences in the spinal column that is lower-lumbar, upper-lumbar, upper-thoracic, mid-upper thoracic, mid-lower thoracic, lower thoracic and cervical spine at inclination, lateral bending and twist rotation between group A and group B (<.05, <.01 and <.001). As a results, group B had more restrictive motion than group A in the spinal column and leg movement behaved like a 'shock absorber". And the number of asymmetry index (AI) showed that group B was much lager unbalance than group A. In conclusion, non-exercise group was known to much more influence the dynamic stability of equilibrium for bilateral balance. These finding suggested that dynamic stability aimed at increasing balance of the trunk ROM must involve methods and strategies intended to reduce left/right asymmetry and the exercise injury.

The Effect Analysis of Postural Stability on the Inter-Segmental Spine Motion according to Types of Trunk Models in Drop Landing (드롭착지 동작 시 체간모델에 따른 척추분절운동이 자세안정성 해석에 미치는 영향)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • The purpose of this study was to assess the inter-segmental trunk motion during which multi-segmental movements of the spinal column was designed to interpret the effect of segmentation on the total measured spine motion. Also it analyzed the relative motion at three types of the spine models in drop landing. A secondary goal was to determine the intrinsic algorithmic errors of spine motion and the usefulness of such an approach as a tool to assess spinal motions. College students in the soccer team were selected the ten males with no history of spine symptoms or injuries. Each subject was given a fifteen minute adaptation period of drop landing on the 30cm height box. Inter-segmental spine motion were collected Vicon Motion Capture System (250 Hz) and synchronized with GRF data (1000 Hz). The result shows that Model III has a more increased range of motion (ROM) than Model I and Model II. And the Lagrange energy has significant difference of at E3 and E4 (p<.05). This study can be concluded that there are differences in the three models of algorithm during the phase of load absorption. Especially, Model III shows proper spine motion for the inter-segmental joint motion with the interaction effects using the seven segments. Model III shows more proper observed values about dynamic equilibrium than Model I & Model II. The findings have shown that the dynamic stability strategy of Model III toward multi-directional spinal motion supports for better function of the inter-segmental motor-control than the Model I and Model II.

A Study of Dynamic Motion Analysis Device for Free Weight Exercise (프리웨이트운동의 동적 동작분석장치에 관한 연구)

  • Rahman, Mustafizur;Park, Ju-hoon;Kim, Ji-won;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.271-279
    • /
    • 2020
  • Squats and lunges are important exercises for strengthening the trunk and lower body among various free weight exercises. It should be achieved safe and effective excise through establishing of theoretical basis for exercise posture and standard movement. Therefore, it's necessary to develop the exercise model in order to prepare the scientific countermeasures for the prevent injuries and error movement through optimal exercise movement. For this purpose, it is effective to use appropriate instruments for motion compensation according to the optical motion and error motion. In this paper, we develop a motion model analysis system based on dynamic motion through the four-point load cell for dynamic motion analysis. Proposed analytical method, the optimal and the error motion numerical data is obtained through the dynamic motion analysis. And we verified that dynamic movement is simplified to establish the motion modeling according to the classification motion and the numerical quantification data for analyzing.