• Title/Summary/Keyword: Dynamic stress

Search Result 1,968, Processing Time 0.03 seconds

Dynamic Deformation Behavior of Rubber Under High Strain-Rate Compressive Loading by Using Plastic SHPB Technique (플라스틱 SHPB기법을 사용한 고무의 고변형률 하중 하에서의 동적변형 거동)

  • 이억섭;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.158-165
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain rate of the order of 10$^3$/s∼l0$^4$/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from structure under varying dynamic loading are determined by using plastic SHPB technique. A transition point to scope with the dynamic deformation behavior of rubber-like material is defined in this paper and used to characterize the specifics of the dynamic deformation of rubber materials.

Effect of Interface Hole Shape on Dynamic Interface Crack Propagation (계면에 존재하는 구멍의 모양이 동적 계면균열전파에 미치는 영향)

  • Yin, Hai-Long;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1217-1222
    • /
    • 2002
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of the interface crack. This paper investigates the effects of the hole (existed along the path of the crack propagation) shape on the dynamic interface crack propagation behavior by comparing the experimental isochromatic fringes to the theoretical stress fields.

DADS 및 MSC/NASTRAN을 이용한 다물체계 유연물체의 동역학 해석

  • Kim, Chang-Bu;Baek, Yun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.63-71
    • /
    • 2001
  • This paper introduces a method for calculation of dynamic stress occurring in flexible bodies of a moving multibody system by using commercial softwares DADS for dynamic analysis and MSC/NASTRAN for finite element analysis. Three methods for model transient response analysis of a flexible body are summarized. Elastic deformation of a flexible body can be described with normal modes and static modes composed of constraint modes and residual attachment modes. The deformation modes divided into fixed-interface modes and free-interface modes can be determined by using MSC/NASTRAN and selected for dynamic analysis. The dynamic results obtained from DADS are utilized to calculate dynamic stress by using mode-displacement method or mode-acceleration method of MSC/NASTRAN. As a numerical example of the analysis, we used a three dimensional slider-crank model with a flexible connecting rod.

  • PDF

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

A Study on the Dynamic Characteristics of Tungsten Alloy using Explicit FEM (익스플리시트 유한요소법을 이용한 텅스텐합금의 동적특성에 관한 연구)

  • Hwang D. S.;Rho B. L.;Hong D. H.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.55-61
    • /
    • 2000
  • Tungsten heavy metal is characterized bi a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as for defense purposes(kinetic energy penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.

  • PDF

Measurement of Static and Dynamic Stress and Motion Characteristics of Excavators (굴삭기의 정적/동적 응력 및 구동 특성 계측)

  • Kim, Gyu-Sung;Choung, Joon-Mo;Jang, Young-Sik;Choe, Ick-Hung;Lee, Joon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.473-478
    • /
    • 2003
  • This paper presents static and dynamic measurement of the stress and motion characteristics for crawler type excavators. Eight scenarios were prepared for static measurement based on two extreme digging positions, maximum digging reach position and maximum digging force position. The measured items for static motion included stress, cylinder pressure, cylinder stroke and digging force. The measured static stresses showed that asymmetric digging force acting on a bucket induced higher stress level than symmetric one. The measured static pressures and digging forces also agreed with design pressures and design digging forces, respectively. The dynamic measurement was performed for two types of motion, that is, simple reciprocation of each cylinder and actual digging motion. The measured items for dynamic motion were stroke and pressure of each cylinder, stresses on the working device and acceleration on the upper plate of an arm. The measured data showed that the natural frequency of the excavator highly depended on the hydraulic stiffness of cylinders. Digging motion tests revealed that digging motion was closer to static motion rather than dynamic one.

  • PDF

Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel (304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측)

  • 한형기;유연철;김성일
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF

In Situ Mechanical Response of Bovine Humeral Head Articular Cartilage in a Physiological Loading Environment (생리학적인 하중 조건에서 소 상완골 연골의 기계적 특성)

  • Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.145-150
    • /
    • 2008
  • One of the unresolved questions in articular cartilage biomechanics is the magnitude of the dynamic modulus and tissue compressive strains under physiological loading conditions. The objective of this study was to characterize the dynamic modulus and compressive strain magnitudes of bovine articular cartilage at physiological compressive stress level and loading frequency. Four bovine calf shoulder joints (ages 2-4 months) were loaded in Instron testing system under load control, with a load amplitude up to 800 N and loading frequency of 1 Hz, resulting in peak engineering stress amplitude of ${\sim}5.8\;MPa$. The corresponding peak deformation of the articular layer reached ${\sim}27%$ of its thickness. The effective dynamic modulus determined from the slope of stress versus strain curve was ${\sim}23\;MPa$, and the phase angle difference between the applied stress and measured strain which is equivalent to the area of the hystresis loop in the stress-strain response was ${\sim}8.3^{\circ}$. These results are representative of the functional properties of articular cartilage in a physiological loading environment. This study provides novel experimental findings on the physiological strain magnitudes and dynamic modulus achieved in intact articular layers under cyclical loading conditions.

Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Out-of-Plane Deformation (면외변형하의 이방성 띠판에 대한 동적계면균열)

  • Park, Jae-Wan;Choe, Seong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.949-958
    • /
    • 2001
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strips under out-of-plane clamped displacements is analyzed. Using Fourier integral transform the problem is formulated and the Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. Using the near tip fields of stresses and displacements, the dynamic energy release rate is also obtained as a form of the stress intensiy factor.