• Title/Summary/Keyword: Dynamic spatial network

Search Result 88, Processing Time 0.025 seconds

Multivariate Congestion Prediction using Stacked LSTM Autoencoder based Bidirectional LSTM Model

  • Vijayalakshmi, B;Thanga, Ramya S;Ramar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.216-238
    • /
    • 2023
  • In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.

A Heuristic Outlier Filtering Algorithm for Generating Link Travel Time using Taxi GPS Probes in Urban Arterial (링크통행시간 생성을 위한 이상치 제거 알고리즘 개발)

  • Choi, Keechoo;Choi, Yoon-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.731-738
    • /
    • 2006
  • Facing congestion, people want to know traffic information about their routes, especially real-time link travel time (LTT). In this paper, as a sequel paper of the previous non-taxi based LTT generating study by Choi et al. (1998), taxi based GPS probes have been tried to produce LTT for urban arterials. Taxis in itself are good deployment mode of GPS probes although it by nature experiences boarding and alighting time noises which should be accounted. A heuristic real-time dynamic outlier filter algorithm for taxi GPS probe has been developed focusing on urban arterials. An actual traffic survey for dynamic link travel times has been conducted using license plate method for the test arterials of Seoul city transportation network. With the algorithm, it is estimated that 70% of outliers have been filtered and the relative error has been improved by 73.7%. The filtering algorithm developed here would be expected to be in use for other spatial sites with some calibration efforts. Some limitations and future research agenda have also been discussed.

An Implementation of Dynamic Gesture Recognizer Based on WPS and Data Glove (WPS와 장갑 장치 기반의 동적 제스처 인식기의 구현)

  • Kim, Jung-Hyun;Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.561-568
    • /
    • 2006
  • WPS(Wearable Personal Station) for next generation PC can define as a core terminal of 'Ubiquitous Computing' that include information processing and network function and overcome spatial limitation in acquisition of new information. As a way to acquire significant dynamic gesture data of user from haptic devices, traditional gesture recognizer based on desktop-PC using wire communication module has several restrictions such as conditionality on space, complexity between transmission mediums(cable elements), limitation of motion and incommodiousness on use. Accordingly, in this paper, in order to overcome these problems, we implement hand gesture recognition system using fuzzy algorithm and neural network for Post PC(the embedded-ubiquitous environment using blue-tooth module and WPS). Also, we propose most efficient and reasonable hand gesture recognition interface for Post PC through evaluation and analysis of performance about each gesture recognition system. The proposed gesture recognition system consists of three modules: 1) gesture input module that processes motion of dynamic hand to input data 2) Relational Database Management System(hereafter, RDBMS) module to segment significant gestures from input data and 3) 2 each different recognition modulo: fuzzy max-min and neural network recognition module to recognize significant gesture of continuous / dynamic gestures. Experimental result shows the average recognition rate of 98.8% in fuzzy min-nin module and 96.7% in neural network recognition module about significantly dynamic gestures.

ROUTE/DASH-SRD based Point Cloud Content Region Division Transfer and Density Scalability Supporting Method (포인트 클라우드 콘텐츠의 밀도 스케일러빌리티를 지원하는 ROUTE/DASH-SRD 기반 영역 분할 전송 방법)

  • Kim, Doohwan;Park, Seonghwan;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.849-858
    • /
    • 2019
  • Recent developments in computer graphics technology and image processing technology have increased interest in point cloud technology for inputting real space and object information as three-dimensional data. In particular, point cloud technology can accurately provide spatial information, and has attracted a great deal of interest in the field of autonomous vehicles and AR (Augmented Reality)/VR (Virtual Reality). However, in order to provide users with 3D point cloud contents that require more data than conventional 2D images, various technology developments are required. In order to solve these problems, an international standardization organization, MPEG(Moving Picture Experts Group), is in the process of discussing efficient compression and transmission schemes. In this paper, we provide a region division transfer method of 3D point cloud content through extension of existing MPEG-DASH (Dynamic Adaptive Streaming over HTTP)-SRD (Spatial Relationship Description) technology, quality parameters are further defined in the signaling message so that the quality parameters can be selectively determined according to the user's request. We also design a verification platform for ROUTE (Real Time Object Delivery Over Unidirectional Transport)/DASH based heterogeneous network environment and use the results to validate the proposed technology.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.

Story-based Information Retrieval (스토리 기반의 정보 검색 연구)

  • You, Eun-Soon;Park, Seung-Bo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.81-96
    • /
    • 2013
  • Video information retrieval has become a very important issue because of the explosive increase in video data from Web content development. Meanwhile, content-based video analysis using visual features has been the main source for video information retrieval and browsing. Content in video can be represented with content-based analysis techniques, which can extract various features from audio-visual data such as frames, shots, colors, texture, or shape. Moreover, similarity between videos can be measured through content-based analysis. However, a movie that is one of typical types of video data is organized by story as well as audio-visual data. This causes a semantic gap between significant information recognized by people and information resulting from content-based analysis, when content-based video analysis using only audio-visual data of low level is applied to information retrieval of movie. The reason for this semantic gap is that the story line for a movie is high level information, with relationships in the content that changes as the movie progresses. Information retrieval related to the story line of a movie cannot be executed by only content-based analysis techniques. A formal model is needed, which can determine relationships among movie contents, or track meaning changes, in order to accurately retrieve the story information. Recently, story-based video analysis techniques have emerged using a social network concept for story information retrieval. These approaches represent a story by using the relationships between characters in a movie, but these approaches have problems. First, they do not express dynamic changes in relationships between characters according to story development. Second, they miss profound information, such as emotions indicating the identities and psychological states of the characters. Emotion is essential to understanding a character's motivation, conflict, and resolution. Third, they do not take account of events and background that contribute to the story. As a result, this paper reviews the importance and weaknesses of previous video analysis methods ranging from content-based approaches to story analysis based on social network. Also, we suggest necessary elements, such as character, background, and events, based on narrative structures introduced in the literature. We extract characters' emotional words from the script of the movie Pretty Woman by using the hierarchical attribute of WordNet, which is an extensive English thesaurus. WordNet offers relationships between words (e.g., synonyms, hypernyms, hyponyms, antonyms). We present a method to visualize the emotional pattern of a character over time. Second, a character's inner nature must be predetermined in order to model a character arc that can depict the character's growth and development. To this end, we analyze the amount of the character's dialogue in the script and track the character's inner nature using social network concepts, such as in-degree (incoming links) and out-degree (outgoing links). Additionally, we propose a method that can track a character's inner nature by tracing indices such as degree, in-degree, and out-degree of the character network in a movie through its progression. Finally, the spatial background where characters meet and where events take place is an important element in the story. We take advantage of the movie script to extracting significant spatial background and suggest a scene map describing spatial arrangements and distances in the movie. Important places where main characters first meet or where they stay during long periods of time can be extracted through this scene map. In view of the aforementioned three elements (character, event, background), we extract a variety of information related to the story and evaluate the performance of the proposed method. We can track story information extracted over time and detect a change in the character's emotion or inner nature, spatial movement, and conflicts and resolutions in the story.

Development of Simulation Technology Based on 3D Indoor Map for Analyzing Pedestrian Convenience (보행 편의성 분석을 위한 3차원 실내지도 기반의 시뮬레이션 기술 개발)

  • KIM, Byung-Ju;KANG, Byoung-Ju;YOU, So-Young;KWON, Jay-Hyoun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.67-79
    • /
    • 2017
  • Increasing transportation dependence on the metro system has lead to the convenience of passengers becoming as important as the transportation capacity. In this study, a pedestrian simulator has been developed that can quantitatively assess the pedestrian environment in terms of attributes such as speed and distance. The simulator consists of modules designed for 3D indoor map authoring and algorithmic pedestrian modeling. Module functions for 3D indoor map authoring include 3D spatial modeling, network generation, and evaluation of obtained results. The pedestrian modeling algorithm executes functions such as conducting a path search, allocation of users, and evaluation of level of service (LOS). The primary objective behind developing the said functions is to apply and analyze various scenarios repeatedly, such as before and after the improvement of the pedestrian environment, and to integrate the spatial information database with the dynamic information database. Furthermore, to demonstrate the practical applicability of the proposed simulator in the future, a test-bed was constructed for a currently operational metro station and the quantitative index of the proposed improvement effect was calculated by analyzing the walking speed of pedestrians before and after the improvement of the passage. The possibility of database extension for further analysis has also been discussed in this study.

The Dynamic Effects of Subway Network Expansion on Housing Rental Prices Using a Modified Repeat Sales Model (수도권 지하철 네트워크 확장이 아파트 월세 가격에 미치는 영향 분석 - 수정반복매매모형을 중심으로 -)

  • Kim, Hyojeong;Lee, Changmoo;Lee, Jisu;Kim, Minyoung;Ryu, Taeheyeon;Shin, Hyeyoung;Kim, Jiyeon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.125-139
    • /
    • 2021
  • Continuous subway line expansion over the years in Seoul metropolitan area has contributed to improved accessibility to public transport. Since public transport accessibility has a significant impact on housing decisions, quantitative analysis of correlation between housing prices and public transport accessibility is regarded as one of the most important factors for planning better housing policies. This study defines the reduction of traveling time resulted from the construction of new metro stations despite them not being the closest stations as 'Network Expansion Effect', and seeks to understand how the Network Expansion Effect impacts on housing prices. The study analyzes monthly rent data converted from upfront lump sum deposit, so called Jeonse in Korea, from 2012 to 2018, through 'A Modified Repeat Sales Model.' As a result, the effect of 'Network Expansion' on rental prices in Seoul has stronger during the period of 2017 to 2018 than the base period of 2012 to 2014, which suggests the 'Network Expansion' has a meaningful effect on rent. In addition, in comparison between the most and the least affected group of apartments by 'Network Expansion Effect', the most affected group has more price increase than the least affected group. These findings also indicate that different levels of 'Network Expansion Effect' have various influences on the value of residential real estate properties.

A New Model for Forecasting Inundation Damage within Watersheds - An Artificial Neural Network Approach (인공신경망을 이용한 유역 내 침수피해 예측모형의 개발)

  • Chung, Kyung-Jin;Chen, Huaiqun;Kim, Albert S.
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.9-16
    • /
    • 2005
  • This paper presents the use of an Artificial Neural Network (ANN) as a viable means of forecasting Inundation Damage Area (IDA) in many watersheds. In order to develop the forecasting model with various environmental factors, we selected 108 watershed areas in South Korea and collected 49 damage data sets from 1990 to 2000, of which each set is composed of 27 parameters including the IDA, rainfall amount, and land use. After successful training processes of the ANN, a good agreement (R=0.92) is obtained (under present conditions) between the measured values of the IDA and those predicted by the developed ANN using the remaining 26 data sets as input parameters. The results indicate that the inundation damage is affected by not only meteorological information such as the rainfall amount, but also various environmental characteristics of the watersheds. So, the ANN proves its present ability to predict the IDA caused by an event of complex factors in a specific watershed area using accumulated temporal-spatial information, and it also shows a potential capability to handle complex non-linear dynamic phenomena of environmental changes. In this light, the ANN can be further harnessed to estimate the importance of certain input parameters to an output (e.g., the IDA in this study), quantify the significance of parameters involved in pre-existing models, and contribute to the presumption, selection, and calibration of input parameters of conventional models.

Meta-server Model for Middleware Supporting for Context Awareness (상황인식을 지원하는 미들웨어를 위한 메타서버 모델)

  • Lee, Seo-Jeong;Hwang, Byung-Yeon;Yoon, Yong-Ik
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.2 s.12
    • /
    • pp.39-49
    • /
    • 2004
  • An increasing number of distributed applications will be achieved with mobile technology. These applications face temporary loss of network connectivity when they move. They need to discover other hosts in an ad-hoc manner, and they are likely to have scarce resources including CPU speed, memory and battery power. Software engineers building mobile applications need to use a suitable middleware that resolves these problems and offers appropriate support for developing mobile applications. In this paper, we describe the meta-server building for middleware that addresses reflective context awareness and present usability with demonstration. Metadata is consist of user configuration, device configuration, user context, device context and dynamic image metadata. When middleware send a saving or retrieval request to meta-server, it returns messages to middleware after the verification of the request. This meta-server has the application for multimedia stream services with context awareness.

  • PDF