• Title/Summary/Keyword: Dynamic soil properties

Search Result 208, Processing Time 0.026 seconds

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.

Effect of static and dynamic impedance functions on the parametric analysis of SSI system

  • Maroua Lagaguine;Badreddine Sbarta
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.293-310
    • /
    • 2024
  • This paper investigates the dynamic response of structures during earthquakes and provides a clear understanding of soil-structure interaction phenomena. It analyses various parameters, comprising ground shear wave velocity and structure properties. The effect of soil impedance function form on the structural response of the system through the use of springs and dashpots with two frequency cases: independent and dependent frequencies. The superstructure and the ground were modeled linearly. Using the substructure method, two different approaches are used in this study. The first is an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. The second is a numerical analysis generated with 2D finite element modeling using ABAQUS software. The superstructure is represented as a SDOF system in all the SSI models assessed. This analysis establishes the key parameters affecting the soil-structure interaction and their effects. The different results obtained from the analysis are compared for each studied case (frequency-independent and frequency-dependent impedance functions). The achieved results confirm the sensitivity of buildings to soil-structure interaction and highlight the various factors and effects, such as soil and structure properties, specifically the shear wave velocity, the height and mass of the structure. Excitation frequency, and the foundation anchoring height, also has a significant impact on the fundamental parameters and the response of the coupled system at the same time. On the other hand, it have been demonstrated that the impedance function forms play a critical role in the accurate evaluation of structural behavior during seismic excitation. As a result, the evaluation of SSI effects on structural response must take into account the dynamic properties of the structure and soil accordingly.

Freezing and Thawing Properties of Polypropylene Fiber Reinforced Eco-concrete (폴리프로필렌 섬유보강 에코콘크리트의 동결융해 특성)

  • Sung Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.59-66
    • /
    • 2006
  • This study is performed to evaluate freezing and thawing properties of polypropylene fiber reinforced eco-concrete using soil, natural coarse aggregate, soil compound and polypropylene fiber. The mass loss ratio is decreased with increasing the content of natural coarse aggregate and soil compound, but it is increased with increasing the content of polypropylene fiber. The ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are increased with increasing the content of natural coarse aggregate and soil compound, but it is decreased with increasing the content of polypropylene fiber. The mass loss ratio, ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are $1.49{\sim}3.32%,\;1,870{\sim}2,465\;m/s,\;77X10^2{\sim}225X10^2\;MPa\;and\;84.6{\sim}92.8$ after freezing and thawing 300 cycles, respectively. These eco-concrete can be used for environment-friendly side walk and farm road.

Delayed compaction effect on the strength and dynamic properties of clay treated with lime

  • Turkoz, Murat
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.471-480
    • /
    • 2019
  • The constructions of engineering structures such as airports, highways and railway on clayey soils may create many problems. The economic losses and damages caused by these soils have led researchers to do many studies using different chemical additives for the stabilization of them. Lime is a popular additive used to stabilize the clayey soils. When the base course is stabilized by mixing with an additive, inevitable delays may occur during compaction due to reasons like insufficient workers, breakdown of compaction equipment, etc. The main purpose of this study is to research the effect of compaction delay time (7 days) on the strength, compaction, and dynamic properties of a clay soil stabilized with lime content of 0, 3, 6, 9, 12 and 15% by dry weight of soil. Compaction characteristics of these mixes were determined immediately after mixing, and after 7 days from the end of mixing process. Within this context, unconfined compressive strength (UCS) under the various curing periods (uncured, 7 and 28 days) and dynamic triaxial tests were performed on the compacted specimens. The results of UCS and dynamic triaxial tests showed that delayed compaction on the strength of the lime-stabilized clay soil were significantly effective. Especially with the lime content of 9%, the increase in the shear modulus (G) and UCS of 28 days curing were more prominent after 7 days mellowing period. Because of the complex forms of hysteresis loops caused by the lime additive, the damping ratio (D) values differed from the trends presented in the literature and showed a scattered relationship.

Effect of Duration of Confinement and Its Affecting Factors on the Low-Amplitude Shear Modulus ($G_{max}$) of Soils (토질 최대전단탄성계수($G_{max}$)에 미치는 시간지속효과 및 그 영향요소에 관한 연구)

  • 박덕근
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 1999
  • Dynamic Shear modulus (G) is one of the imfortant dynamic soil properties to estimate the response of soil to dynamic loading. Problems in engineering geo1ogy practice the require the knowledge of soil properties subjected to dynamic loadings include soil-structure interaction during earthquakes, bomb blasts, construction operations, and mining. Although the dynamic shear modulus (G) is a time-dependent property, G change with time is often neglected. In this study, the effect of duration of confinement and its affecting factors (previous stress and strain, particle size and sustained pressure, and plasticity index) on the low-amplitude shear modulus ($G_{max}$) of soils are reviewed, and some empirical correlations based on mean particle diameter and plasticity index are proposed.

  • PDF

A study on the topographical and geotechnical effects in 2-D soil-structure interaction analysis under ground motion

  • Duzgun, Oguz Akin;Budak, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.829-845
    • /
    • 2011
  • This paper evaluates the effects of topographical and geotechnical irregularities on the dynamic response of the 2-D soil-structure systems under ground motion by coupling finite and infinite elements. A numerical procedure is employed, and a parametric study is carried out for single-faced slope topographies. It is concluded that topographic conditions may have important effects on the ground motion along the slope. The geotechnical properties of the soil will also have significantly amplified effects on the whole system motion, which cannot be neglected for design purposes. So, dynamic response of a soil-structure systems are primarily affected by surface shapes and geotechnical properties of the soil. Location of the structure is another parameter affecting the whole system response.

Dynamic Properties and Settlement Characteristics of Korea Weathered Granite Soils (화강풍화토의 동적 물성치와 침하특성에 대한 연구)

  • Park, Jong-Gwan;Kim, Yeong-Uk;Lee, In-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 1993
  • Weathered granite soil is the most representative as a surface soil in Korea. In this paper, the dynamic properties and settlement characteristics of Korea granite soil are studied through the dynamic triaxial compression tests. The dynamic characteristics are very important on the analysis of the foundations under dynamic loading such as machine vibration and earthquake. Soil samples having different grain sixtes were prepared at the relative densities between 80oA and 90oA and tested to measure shear moduli and damping ratios at each level of shear strain. The measured shear moduli of weathered granite soils showed large variations according to the grain sizes, confining pressures, relative densities and shear strains. Sandy weathered granite had a little larger dynamic properties than the average values of the sand studied by Seed and Idriss. Pot the well compacted granite soils, little residual settlements occured due to dynamic loading.

  • PDF

A Study on Dynamic Responses of Tracked Vehicle on Extremely Soft Cohesive Soil (점착성 연약지반 주행차량의 동적거동 연구)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.323-332
    • /
    • 2004
  • This paper concerns about a study on dynamic responses of tracked vehicle on soft cohesive soil. For dynamic analyses of tracked vehicle, two different models were adopted, i.e. a single-body model and a multi-body model. The single-body vehicle model was assumed as a rigid body with 6-dof. The multi-body vehicle was modeled by using a commercial software, RecurDyn-LM. For the both models properties of cohesive soft soil were modeled by means of three relationships: pressure to sinkage, shear displacement to shear stress, and shear displacement to dynamic sinkage. Traveling performances of the two tracked vehicle models were compared through dynamic analyses in time domain.

Strain-dependent dynamic properties of cemented Busan clay (부산 고결점토의 변형률 의존적 동적거동특성에 관한 연구)

  • Kim, Ah-Ram;Chang, Il-Han;Cho, Gye-Chun;Shim, Sung-Hyun;Kang, Yeoun-Ike
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.61-67
    • /
    • 2010
  • Thick soft clay deposits which are generally located at the west and south coast of the Korean peninsula have complicated characteristics according to their orientation and formation history. Thus, several geotechnical problems could possibly occur when those soft clay deposits are used as foundations for marine structures. Deep cement mixing (DCM) method is one of the most widely used soft soil improvement method for various marine structures, nowadays. DCM method injects binders such as cement into the soft ground directly and mixes with the in-situ soil to improve the strength and other geotechnical properties sufficiently. However, the natural impacts induced by dynamic motions such as ocean waves, wind, typhoon, and tusnami give significant influences on the stability of marine structures and their underlaying foundations. Thus, the dynamic properties become important design criteria to insure the seismic stability of marine structures. In this study, the dynamic behavior of cemented Busan clay is evaluated. Laboratory unconfined compression test and resonant column test are performed on natural in-situ soil and cement mixed specimens to confirm the strength and strain-dependent dynamic behavior variation induced by cement mixing treatment. Results show that the unconfined compressive strength and shear modulus increase with curing time and cement content increment. Finally, the optimized cement mixing ratio for sufficient dynamic stability is obtained through this study. The results of this study are expected to be widely used to improve the reliability of seismic design for marine structures.

  • PDF