• Title/Summary/Keyword: Dynamic simulation model

Search Result 2,977, Processing Time 0.035 seconds

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks (Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구)

  • Kang, Youngshin;Park, Bumjin;Cho, Am;Yoo, Changsun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.

Tracking of Walking Human Based on Position Uncertainty of Dynamic Vision Sensor of Quadcopter UAV (UAV기반 동적영상센서의 위치불확실성을 통한 보행자 추정)

  • Lee, Junghyun;Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • The accuracy of small and low-cost CCD cameras is insufficient to provide data for precisely tracking unmanned aerial vehicles (UAVs). This study shows how a quad rotor UAV can hover on a human targeted tracking object by using data from a CCD camera rather than imprecise GPS data. To realize this, quadcopter UAVs need to recognize their position and posture in known environments as well as unknown environments. Moreover, it is necessary for their localization to occur naturally. It is desirable for UAVs to estimate their position by solving uncertainty for quadcopter UAV hovering, as this is one of the most important problems. In this paper, we describe a method for determining the altitude of a quadcopter UAV using image information of a moving object like a walking human. This method combines the observed position from GPS sensors and the estimated position from images captured by a fixed camera to localize a UAV. Using the a priori known path of a quadcopter UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations that represent the relation between image frame coordinates for a moving object and the estimated quadcopter UAV's altitude. Since the equations are based on the geometric constraint equation, measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the quadcopter UAV. The Kalman filter scheme is applied for this method. Its performance is verified by a computer simulation and experiments.

Adaptive Fuzzy Bilinear Synchronization Control Design for Uncertain $L\ddot{u}$ Chaos System (불확실한 $L\ddot{u}$ 카오스 시스템을 위한 적응 퍼지 Bilinear 동기화 제어 설계)

  • Baek, Jae-Ho;Lee, Hee-Jin;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.59-66
    • /
    • 2010
  • This paper is proposed an adaptive fuzzy bilinear synchronization design for uncertain $L\ddot{u}$ chaos system. It is assumed that the $L\ddot{u}$ chaos system has unknown parameters. First, The $L\ddot{u}$ chaos system can be reconstructed via TS fuzzy bilinear modeling. We design an adaptive fuzzy bilinear synchronization control scheme based on TS fuzzy bilinear $L\ddot{u}$ chaos system with uncertain parameters. Lyapunov theory is employed to guarantee the stability of error dynamic system between TS fuzzy bilinear $L\ddot{u}$ chaos system and the proposed slave system and to derive the adaptive laws for estimating unknown parameters. Simulation results is given to demonstrate the validity of our proposed synchronization scheme.

Jeju 80kV HVDC Controller Modeling Using PSCAD/EMTDC Program (PSCAD/EMTDC 프로그램을 이용한 제주 80kV HVDC 제어기 모델링)

  • Choi, Soon-Ho;Lee, Seong-Doo;Kim, Chan-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.533-541
    • /
    • 2011
  • This paper studies modeling of Jeju 80kV HVDC system and its controller by using PSCAD/EMTDC program. Reduced ac network is applied to verify interaction between ac network and dc system. Design parameter is applied to the converter transformer, harmonic filter and dc transmisstion line to simulate dc system. HVDC controller is divided into a rectifier controller and a inverter controller according to the converter operating mode. The inverter controller is composed of current control, voltage control and extingtion angle control. The rectifier controller is composed of current control and voltage control. Both controller has VDCOL characteristics so that current order is dependant on voltage variation. Step response, ac network single phase fault, three phase fault is simulated to verify the dynamic performance of controller model in both transient state and steady state.

Beat tuning of Silla Great Bell (신라대종의 맥놀이 조절)

  • Kim, Seockhyun;Lee, Joong Hyeok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Silla Great Bell was made to reproduce King Seongdeok Divine Bell and it was restored to have the same structure and patterns. The most difficult problem was to reproduce the magnificent striking sound and dynamic hum tone with strong beat like in King Seongdeok Divine Bell. Especially, beating sound is attributed to the uncontrollable asymmetry occurring in the casting process, so it can not be predicted or controlled before casting. In this study, we introduce the method and process to make Silla Great Bell have a strong beat with a proper period. Position conditions of mode pairs and striking point for a strong beat were identified. Bell thickness was locally decreased to make proper period of beat. The process was performed according to the simulation result of an equivalent bell model. As a result, the original weak and long beat was made to a strong beat with a proper period.

Design and Implementation of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator (퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계 및 구현)

  • Lee, Sang-Yun;Shin, Woo-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.334-341
    • /
    • 2003
  • In this paper, we proposed a recurrent time delayed neural network(RTDNN) controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed recurrent time delayed neural network controller get a good response compare with a time delayed neural network(TDU) controller. We implemented the controller using the DSP processor and applied in a hydraulic servo system. And then we observed an experimental results.

Effects of demi-hull separation ratios on motion responses of tidal current turbines-loaded catamaran

  • Junianto, Sony;Mukhtasor, Mukhtasor;Prastianto, Rudi Walujo;Jo, Chul Hee
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.87-110
    • /
    • 2020
  • Catamaran has recently been a choice to support a typical vertical axis turbine in floating tidal current energy conversion system. However, motion responses associated with the catamaran can reduce the turbines efficiency. The possibility to overcome this problem isto change the catamaran parameter by varying and simulating the demi-hull separations to have lower motion responses. This simulation was undertaken by Computational Fluid Dynamic (CFD) using potential flow analysis. Cases of demi-hull separation were considered, with ratios of demi-hull separation (S) to the breadth of demi-hull (B), S/B of 3.45, 4.95, 6.45, 7.2 and 7.95. In order to compare to the previous works in the literature, the regular wave was set with wave height of 0.8 m. Furthermore, the analysis was carried out by irregular waves with significant wave height, Hs, of about 0.09 to 1.5 m and the wave period, T, of about 1.5 to 6 s or corresponding to the wave frequency, ω, of about 1.1 to 4.2 rad/s. The wave spectrum was derived from the equation of the International Towing Tank Conference (ITTC). For the case of turbines-loaded catamaran under consideration, the new finding is that the least significant amplitude response can be satisfied at the ratio S/B of 7.2. This study indicates that selecting a right choice of demi-hull separation ratio could contribute in reducing motion responses of the tidal current turbines-loaded catamaran.

Assessment & implications of the business cessation support system for farmers: focus on the grape business

  • Han, Sukho;Youm, Jungwon;Jang, Heesoo;Koo, Seungmo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.533-544
    • /
    • 2020
  • In this paper, we conducted a dynamic ex-post assessment on the grape business cessation support System. Based on the analysis results, in the short term, there was an increase in grape price due to a decrease in production and accompanying increases in the prices of consumption substitution items. However, in the long run, grape prices fell again due to an increase in grape production because of the entry of new grape farmers and the growth of adult grape trees. In addition, the analysis showed that the balloon effect caused by the conversion of crops caused indirect damage such as an increase in the production volume of substitution crops and a decrease in prices. When analyzing the social welfare measurement, the results showed that the support system for business cessation increased the overall social welfare due to an increase in producer welfare because of a price increase in the short term, but in the long term, both producer and consumer welfare decreased. In the end, it is necessary to review the system because the government's intervention may cause market distortion and inefficient resource allocation. Above all, it is necessary to minimize the indirect effect of the industry's contraction and balloon effect due to excessive business cessation. For this, conditional support should be provided in parallel with post management rather than unconditional support. In addition, it is necessary to provide a strategic support system that considers substitution items in addition to those items to be supported.

Study on Leading-phase Operation Capability of a 770 MW Jumbo Hydro-generator based on Stability Analysis and End-Region Heat Analysis

  • Fan, Zhen-nan;Zhou, Zhi-ting;Li, Jian-fu;Wen, Kun;Wang, Jun;Sun, Zhang;Wang, Tao;Yao, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1317-1325
    • /
    • 2018
  • A generator-grid coupling calculation model is established to study the leading-phase operational capability of a 770 MW jumbo hydro-generator in a Chinese ultra-mega hydropower station. The static and dynamic stability of the generator are analyzed and calculated to obtain stability limits under leading-phase operating conditions. Three-dimensional (3D) time-varying nonlinear moving electromagnetic and temperature field models of the generator end-region are also established and used to determine the magnetic field, loss, and temperature of the end-region under the leading-phase operating condition. The simulation results agree with data measured from the actual 770 MW hydro-generator. This paper provides reliable reference data for the leading-phase operation of a jumbo hydro-generator, which will help to improve in the design and manufacture of future hydro-generators.

An Intelligent Control Method for Optimal Operation of a Fuel Cell Power System (연료전지 발전 시스템의 최적운전을 위한 지능제어 기법)

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.154-161
    • /
    • 2009
  • A fuel cell power plant is a very complex system which has various control loops with some non-linearity. For control of a fuel cell power plant, dynamic models of fuel cell stacks have been developed and simplified process flow diagrams of a fuel cell power plant has been presented. Using such a model of a Molten Carbonate Fuel Cell (MCFC) power plant, this paper deals with development of an intelligent setpoint reference governor (I-SRG) to find the optimal setpoints and feed forward control inputs for the plant power demand. The I-SRG is implemented with neural network by using Particle Swarm Optimization (PSO) algorithm based on system constraints and performance objectives. The feasibility of the I-SRG is shown through simulation of an MCFC power plant for tracking control of its power demand.