DOI QR코드

DOI QR Code

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks

Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구

  • Kang, Youngshin (Flight Control Research Team, Korea Aerospace Research Institute) ;
  • Park, Bumjin (Flight Control Research Team, Korea Aerospace Research Institute) ;
  • Cho, Am (Flight Control Research Team, Korea Aerospace Research Institute) ;
  • Yoo, Changsun (Flight Control Research Team, Korea Aerospace Research Institute)
  • 강영신 (한국항공우주연구원 비행제어연구팀) ;
  • 박범진 (한국항공우주연구원 비행제어연구팀) ;
  • 조암 (한국항공우주연구원 비행제어연구팀) ;
  • 유창선 (한국항공우주연구원 비행제어연구팀)
  • Received : 2016.10.18
  • Accepted : 2016.12.05
  • Published : 2017.02.28

Abstract

A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.

매우 큰 정안정성($C_{L{\alpha}}$)을 갖는 틸트덕트 운동모델에 대해 선형 파라미터를 갖는 Sigma-Pi 신경망(SPNN) 제어법칙을 적용하였다. 기존의 비례적분미분(PID) 제어기는 매우 큰 정안정성을 갖는 운동모델이 갖는 강한 기수숙임 문제를 해결하기 어려웠고 이로인해 제어성능을 높일 수 없었다. 이와 달리 외부루프와 내부루프에 모두 적용된 SPNN 제어기는 동역학역변환 및 모델오차를 줄일 수 있는 의사적응제어 명령을 이용해서 과도한 안정성을 개선할 수 있었다. 이를 검증하기 위해서 경로점 추종 시뮬레이션을 이용해서 PID제어 성능과 SPNN제어 성능을 비교하였다.

Keywords

Acknowledgement

Supported by : 산업통상자원부

References

  1. Martin, P. and Tung, C., "Performance and Flowfield Measurements on a 10-inch Ducted Rotor VTOL UAV," Proceedings of the 60th Annual Forum of the A merican Helicopter Society, Baltimore, MD, June 7-10, 2004.
  2. Graf, W., Fleming. J., and Ng, W., "Improving Ducte d Fan UAV Aerodynamics in Forward Flight," 46th AIAA Aerospace Sciences Meeting and Exhibit, 7-10 Jan. 2008, Reno, Nevada, AIAA 2008-430.
  3. Ryu, M., Cho, L., and Cho, J., "Experimental Study on the Aerodynamic Charactericstics of the Ducted fan for the Propulsion of a Small UAV", Journal of The Korean Society for Aeronautical and Space Sciences, Vol.40, No.5, 2012, pp.413-422. https://doi.org/10.5139/JKSAS.2012.40.5.413
  4. Kang, Y.S., Park, B.J., Cho, A. Yoo, C.S., Choi, S. W., "Guidance Law Design for a Tilt-Duct Unmanned Aerial Vehicle," 2014 Fall Aerospace System Conference, 2014.10.31. Muju.
  5. Kang, Y.S., Park, B.J., Cho, A. Yoo, C.S., "Design Improvement of Guidance Control for Tilt Duct UAV", 2015 The Korean Society for Aviation and Aeronautics Conference, 2015.5.22. Hanseo Univ.
  6. H. K. Khalil, 2002, Nonlinear Systems, 3rd Ed., Prentice Hall, New Jersey.
  7. A. Isidori, 1995, Nonlinear Control Systems, 3rd Ed., Springer, New York.
  8. Kim, B. and Calise, A., "Nonlinear Flight Control Using Neural Networks", Journal of Guidance, Control, and Dynamics, Vol. 20, No. 1, 1997, pp. 26-33. https://doi.org/10.2514/2.4029
  9. Kim, B.M., Kim, B.S, Kim, N.W., "Trajectory Tracking Controller Design Using Neural Networks for a T iltrotor Unmanned Aerial Vehicle", Proceedings of the Institution of Mechanical Engineers, Part G: Journ al of Aerospace Engineering August 1, 2010, Vol. 224, No. 8, pp. 881-896. https://doi.org/10.1243/09544100JAERO710
  10. Kang YS, Kim NW, Kim BS, et al. Autonomous Waypoint Guidance for Tilt-rotor Unmanned Aerial Veh icle that Has Nacelle Fixed Auxiliary Wings. Proceedings of the Institution of Mechanical Engineers, Part G - Journal of Aerospace Engineering 2014; Vol. 228, No.14, pp. 2695-2717. DOI:10.1177 /09544100145 25127. https://doi.org/10.1177/0954410014525127
  11. T. I. Fossen, Marine Control Systems - Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics (http://www.marinecybernetics.com), Norway, 2002, pp. 167-169.
  12. P. Kim, Rigid Body Dynamics for Beginners - Euler Angles & Quaternions, CreateSpace Independent Publishing Platform, USA, 2013, pp.64-69.
  13. Kang, Y.S., Park, B.J., Cho, A. Yoo, C.S., Choi, S. W., "Control Law Design for Tilt-Duct UAV", 2013 Fall Aerospace System Conference, 2013.11.01. Kyungju.
  14. Eric N. Johnson and Anthony J. Calise, "Pseudo-Control Hedging: A new method for adaptive control", Advances in Navigation Guidance and Control Technology Workshop November 1-2, 2000, Redstone Arsenal, Alabama.
  15. Rysdyk, R. T. and Calise, A. J. "Nonlinear Adaptive Flight Control Using Neural Networks," IEEE Controls Systems Magazine, Vol. 18, No. 6, Dec 1998, pp. 14-25. https://doi.org/10.1109/37.736008