• 제목/요약/키워드: Dynamic ship domain

Search Result 37, Processing Time 0.022 seconds

A Study on Dynamic Analysis of Moored Ship Motions by Tsunami (쓰나미에 의한 계류 선박의 동적 동요 해석에 관한 연구)

  • Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.661-666
    • /
    • 2005
  • Recent warnings indicate that there is a potential risk of massive earthquake. These earthquakes could produce large-scale tsunamis. Consideration of the effect of Tsunami to the moored ship is very important bemuse it brings the loss of life and vast property damage in a viewpoint of ship operations within a harbor. If a tsunami occurs, a ship in a harbor may begin drifting in case of ship entering and departing harbor, and breakage of mooring rope and drifting of moored ship are happened. And extremely serious accident, such as stranding and collision to a quay, might occur. On the other hand, since the tsunami consists of approximately component waves of several minutes, there is a possibility of resonance with the long period motion of mooring vessel. As the speed of Tsunami is much faster than tidal current in a harbor, a strong resisting force might act on the moored ships. In this paper, the numerical simulation procedure in the matter of ship motions due to the attack of large-scale tsunamis are investigated and the effects on the ship motions and mooring loads are evaluated by numerical simulation.

Modified Split Panel Method Applied to the Analysis of Cavitating Propellers

  • Pyo, S.W.;Suh, J.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.13-23
    • /
    • 2000
  • A low-order potential based boundary element method is applied to the prediction of the flow around the cavitating propeller in steady or in unsteady inflow. For given cavitation number, the cavity shape is determined in an iterative manner until the kinematic and the dynamic boundary conditions are both satisfied on the approximate cavity boundary. In order to improve the solution behavior near the tip region, a hyperboloidal panel geometry and a modified split panel method are applied. The method is then extended to include the analysis of time-varying cavitating flows around the propeller blades via a time-step algorithm in time domain. In the method, the steady state oscillatory solution is obtained by incremental stepping in the itme domain. Finally, the present method is validated through comparison with other numerical results and experimental data.

  • PDF

Hydroelastic Responses for a Ship Advancing in Waves (파랑중 전진하는 선박의 유탄성 응답)

  • 이호영;임춘규;정형배
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.16-21
    • /
    • 2003
  • The very large container ships have been built recently and those ships have very small structural rigidity compared with the other conventional ships. As a result, the destruction of ship hull is occurred by the springing including to warping phenomena due to encounter waves. In this study, the solutions of hydrodynamic coefficients are obtained by solving the three dimensional source distribution method and the forward speed Green function representing a translating and pulsating source potential for infinite water depth is used to calculating the integral equation. The vessel is longitudinally divided into various sections and the added mass, wave damping and wave exciting forces of each section is calculated by integrating the dynamic pressures over the mean wetted section surface. The equations for six degree freedom of motions is obtained for each section in the frequency domain and stiffness matrix is calculated by Euler beam theory. The computations are carried out for very large ship and effects of bending and torsional ridigity on the wave frequency and angle are investigated.

The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant (해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향)

  • Lee, Seung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.

Prediction of fishing boat performance using computational fluid dynamics (전산 유체 해석을 이용한 어선의 속도 성능 추정)

  • Kim, In-Seob;Park, Dong-Woo;Lee, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.574-579
    • /
    • 2016
  • Grid systems used in previous studies were determined to be valid only if the length between the perpendiculars in a model ship was in the range of 6-8 m, and the maximum dynamic trim angle was smaller than $1^{\circ}$. The application of the grid system to a small fishing boat can create numerical instability because the dynamic trim of small boats is generally larger than $3^{\circ}$, and their Froude numbers are in the range of 0.3-0.8. In the present study, resistances of a small fishing boat were stably obtained by reducing the length between the center of buoyancy and the inlet boundary of the numerical domain, and by refining grid cells vertically in a region that would be swept by a free surface. The effective power of the small fishing boat was predicted based on the ITTC-1978 two-dimensional analysis. By using the results of previous towing tank tests, the coefficient of quasi-propulsive efficiency and the brake horsepower at a design draft were calculated.

A Study on Grid Size and Generation Method for Fire Simulations for Ship Accommodation Areas (선박 거주구역 화재시뮬레이션을 위한 격자크기와 생성방법에 관한 연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.791-800
    • /
    • 2017
  • For fires in ship accommodation areas, if it is possible to predict the pattern in which fire will spread and suggest proper countermeasures according to a situation using a fire simulation tool, fire damage may be reduced. However, fire simulations have a practical limit: a significant amount of time is required to analyze the results due to the size of the computational domain and the number of grids. Therefore, in this study, applicable grid size for fire simulations to predict fire patterns in ship accommodation areas was analyzed, and a generation method was conducted to predict fire behavior in real time. As a result, a value within 0.25[m] was judged appropriate as an applicable grid size for ship accommodation areas. Also, in comparison with studies using a single mesh generation method, the visibility value was similar, within 4.3 %, as was the temperature value, within 8.3 %, when a multi mesh generation method was used, showing a decline of 80 % in analysis time. Therefore, it was confirmed that composing a grid using multi mesh was effective for reducing analysis time.

Computational Simulations of Turbulent Wake Behind a Pre-Swirl Duct Using a Hybrid Turbulence Model with High Fidelity (하이브리드 난류 모델을 이용한 전류고정덕트 후류의 고정도 수치 해석)

  • Kang, Min Jae;Jung, Jae Hwan;Cho, Seok Kyu;Hur, Jea-Wook;Kim, Sanghyeon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • A hybrid turbulence model has developed by combining a sub-grid scale model using dynamic k equation in LES with k-𝜔 SST model of RANS equation. To ascertain potential applicability of the hybrid turbulence model, fully developed turbulent channel flows at Re𝜏=180 have been simulated of which computational domain has a top wall with coarse cells and a bottom wall with fine cells. The streamwise mean velocity and turbulent intensity profiles showed a good agreement with DNS data when using the hybrid model rather than using a single model in k-𝜔 SST or dynamic k equation models. Computational simulations of turbulent flows around KVLCC2 with a pre-swirl duct have been mainly performed using the hybrid turbulence model. Compared to the results obtained from RANS simulation with k-𝜔 SST model as well as LES with dynamic k equation SGS model, turbulent wakes of the duct in the present simulation using the hybrid turbulence model were very similar to that of LES. Also, the resistances acting on hull, rudder and duct in hybrid turbulence model were similar to those in RANS simulation whereas the viscous forces acting on the hull in LES had a significant error due to coarse cells inappropriate to the sub-grid scale model.

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

Study on Ship Motion Analysis of Turret-Moored LNG FSRU Compared with Model Test (터렛 계류 LNG FSRU의 운동 해석 및 모형시험 검토)

  • Jee, Hyun-Woo;Park, Byung-Joon;Jeong, Seung-Gyu;Choi, Young-Dal;Hong, Seok-Won;Sung, Hong-Gun;Cho, Seok-Kyu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, hydrodynamic performance of FSRU which is designed to operate in North America East Coast assessed. In order to estimate the dynamic performance, the numerical analysis is carried out based on a time domain simulation program to solve the coupled dynamics for floater and mooring lines which is as well known program as DNV SESAM package. The target operating area is East coast of North America and the model test was carried out based on the meta-ocean data of the area. The mooring analysis is only considered wave without other environment condition at this time. The results of the numerical analysis show the under-estimated results at the higher wave height condition. But the tendency is very similar. Also, the motion response show good agreement compared with model test.

  • PDF

A Study on Tether Cables Used for Deep Submergence Vehicles (심해 잠수정용 테더 케이블에 관한 연구)

  • H. Shin;D.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.56-67
    • /
    • 1995
  • In this paper, a ship-cable-vehicle system's static configuration is shown obtained by solving cable nonlinear statics. Eigenfrequencies of the cable were calculated by the frequency domain analysis application of the linearized cable dynamic equations. Also extreme tensions in a slack-and-snapping long vertical cable were calculated by the clip-ping-off model.

  • PDF