DOI QR코드

DOI QR Code

A Study on Grid Size and Generation Method for Fire Simulations for Ship Accommodation Areas

선박 거주구역 화재시뮬레이션을 위한 격자크기와 생성방법에 관한 연구

  • Kim, Byeol (Graduate school of Korea Maritime and Ocean University) ;
  • Hwang, Kwang-Il (Division of Mechanical Engineering, Korea Maritime and Ocean University)
  • 김별 (한국해양대학교 대학원) ;
  • 황광일 (한국해양대학교 기계공학부)
  • Received : 2017.10.20
  • Accepted : 2017.12.28
  • Published : 2017.12.31

Abstract

For fires in ship accommodation areas, if it is possible to predict the pattern in which fire will spread and suggest proper countermeasures according to a situation using a fire simulation tool, fire damage may be reduced. However, fire simulations have a practical limit: a significant amount of time is required to analyze the results due to the size of the computational domain and the number of grids. Therefore, in this study, applicable grid size for fire simulations to predict fire patterns in ship accommodation areas was analyzed, and a generation method was conducted to predict fire behavior in real time. As a result, a value within 0.25[m] was judged appropriate as an applicable grid size for ship accommodation areas. Also, in comparison with studies using a single mesh generation method, the visibility value was similar, within 4.3 %, as was the temperature value, within 8.3 %, when a multi mesh generation method was used, showing a decline of 80 % in analysis time. Therefore, it was confirmed that composing a grid using multi mesh was effective for reducing analysis time.

선박 거주구역에 화재발생 시 화재시뮬레이션 도구를 이용하여 화재확산형상을 실시간으로 예측하고 상황에 따른 적절한 대응방안을 제시할 수 있다면 화재사고로 인한 인명피해를 최소화시킬 수 있을 것으로 예상된다. 그러나 오늘날 화재시뮬레이션은 해석대상공간의 크기와 그리드 개수에 따라 해석을 하는데 있어, 매우 장시간을 필요로 하는 현실적 한계가 있다. 이에 이 연구에서는 화재시뮬레이션 시간단축을 목적으로 선박 거주구역 화재시뮬레이션에 적용할 수 있는 격자크기와 생성방법에 대한 연구를 수행하였다. 연구결과 선박 거주구역에 적용되는 격자크기는 0.25[m] 이내의 값을 사용하는 것이 가장 효율적인 것으로 판단되었다. 또한 single mesh 격자생성방법으로 수행했을 경우와 비교하여, multi mesh 격자생성방법으로 시뮬레이션을 수행하였을 때 가시거리 값은 4.3 %, 온도 값은 8.3 % 이내에서 유사하고 해석시간은 약 80 % 감소하였기 때문에, multi mesh 방법으로 격자를 생성하는 것이 해석시간을 단축하는데 있어 매우 효과적임을 확인하였다.

Keywords

References

  1. Hu, L. H., N. K. Fong, L. Z. Yang, W. K. Chow, Y. Z. Li and R. Huo(2007), Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: Fire Dynamics Simulator comparisons with measured data, Journal of Hazardous Materials, Volume 140, Issues 1-2, pp. 293-298. https://doi.org/10.1016/j.jhazmat.2006.08.075
  2. Hwang, J. H., K. S. Jeong and D. I. Kand(2008), 3D Fire Simulation Explanation: FDS Version 5, DongHwa Technology, p. 68 (in Korean).
  3. IMO(2016), International Maritime Organization, MSC.1/Circ.1552, Amendments to the Guidelines on Alternative Design and Arrangements for Fire Safety, p. 4.
  4. Jang, Y. J, C. H. Lee, H. B. Kim and W. H.(2008), Proceeding of Korea Society for Railway, The development of parallel computation method for the fire-driven-flow in the subway station, pp. 1792-1798.
  5. Kim, B. and K. I. Hwang(2016), Smoke exhaust performance prediction according to air supply and exhaust conditions for shipboard fires from a human safety point of view, Journal of the Kore Society of Marine Environment & Safety, Vol. 22, No. 7, pp. 782-790. https://doi.org/10.7837/kosomes.2016.22.7.782
  6. Kim, W. O. and W. C. Park(2015), A study on grid aspect ratio of fire dynamic simulator, Fire Science and Engineering, Vol. 39, No. 9, pp. 923-928.
  7. KMST(2016), Korea Maritime Safety Tribunal, Statistics for the marine accidents (in Korean), https://data.kmst.go.kr/kmst//statistics/annualReport/selectAnnualReportList.do#a.
  8. McGrattan, K., S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt(2014a), Fire Dynamics Simulator FDS User's Guide, 6th ed., National Institute of Standards and Technology, p. 35.
  9. McGrattan, K., S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt(2014b), Fire Dynamics Simulator Technical Reference Guide, 6th ed., National Institute of Standards and Technology, p. 29.
  10. NFA(2016), National Fire Agency, Statistics for the fire occurrence (in Korean), http://kosis.kr/statHtml/statHtml.do?org.Id=156&tblId=DT_15601N_007.
  11. Park, W. C.(2012), Selection of grid size in fire simulation for large scale buildings by using FDS, Fire Science and Engineering, Vol. 26, No. 5, pp. 67-72. https://doi.org/10.7731/KIFSE.2012.26.5.067
  12. Park, W. C.(2016), Simulation of under ventilated fires, Fire Science and Engineering, Vol. 30, No. 1, pp. 12-16. https://doi.org/10.7731/KIFSE.2016.30.1.012
  13. Petterson, N. M.(2002), Assessing the Feasibility of Reducing the Grid Resolution in FDS Field Modelling, School of engineering, University of Canterbury, p. 45.
  14. SMART Navigation(2017), http://www.smartnav.org/html/SMART-Navigation/strategy.php.
  15. SOLAS(1980), Regulation 3 Definitions, Chapter II-2 Construction-Fire Detection and Fire Extinction.
  16. Wahlqvist, J. and P. Hees(2013), Validation of FDS for large-scale well-confined mechanically ventilated fire scenarios with emphasis on predicting ventilation system behavior, Fire Safety Journal, Vol. 62, Part B, pp. 102-114. https://doi.org/10.1016/j.firesaf.2013.07.007

Cited by

  1. 딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구 vol.27, pp.1, 2017, https://doi.org/10.7837/kosomes.2021.27.1.022