• Title/Summary/Keyword: Dynamic resistance characteristics

Search Result 314, Processing Time 0.044 seconds

Mixed Mode Control of Constant Power and Constant Current for Resistance Spot Welder using Dynamic Resistance Characteristics (동저항 특성을 이용한 저항 스폿 용접기의 정전력과 정전류의 혼합모드 제어)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1571-1577
    • /
    • 2015
  • A new mixed mode control of constant power and constant current for resistance spot welding inverter is proposed to improve the weld quality. The conventional control scheme adopts constant current or constant power control mode, however, it is not easy to guarantee the high weld quality because of the nonlinear resistance characteristics of the welding point. The proposed method utilizes the nonlinear characteristics by measuring the dynamic resistance in real time. Therefore, it is possible for the welder to be controlled adaptively depending on the welding state. Experimental results show that the proposed control scheme improves the weld quality by 6.8 times compared with the conventional constant current mode control.

Implementation of Dynamic Resistance Database for Weld Quality Improvement of Inverter Spot Welder (인버터 스폿용접기의 용접품질 향상을 위한 동저항 데이터베이스 구축)

  • 김재문;원충연;최규하;김규식;목형수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.294-303
    • /
    • 1999
  • Resistance spot welding is commonly used for welding products of high quality because of clean welding and short w welding-time. But. conventional spot welders bring about the depreciation of welding products, iuespective of dynamic r resistance characteristics during welding time. This paper discussed dynamic resistance database implementation in t terms of welding performance improvement. On different welding conditions, we compared dynamic resistance, r respectively, about pure iron and Sn-Pb alloy on Copper. Also, it investigated the relation of tensile shear strength and d dynamic resistance in welded workpiece.

  • PDF

A Novel Control Method of Resistance Spot Welding Inverter using Dynamic Resistance Characteristics for Weld Quality Improvement (용접품질 향상을 위한 저항 스폿 용접용 인버터의 동저항 특성을 이용한 새로운 제어기법)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.491-497
    • /
    • 2015
  • This study proposes a new control method for a resistance spot welding inverter to improve weld quality. The proposed method is based on the dynamic resistance characteristics of steel sheets to be welded. A point in the second peak value of the dynamic resistance occurs during one shot of the welding current flow. A constant voltage control is applied from zero to the peak point, and a constant current control is adopted from the peak point to the end of the shot. The mixed mode control of the constant voltage and current guarantees high weld quality. Experiments are conducted with a 5 kA power supply and 0.5 mm steel sheets to compare quality. Experimental results show that weld quality is improved more than 10 times that of the conventional control method.

Dynamic Fracture Testing of Welding part of Nuclear Piping by Using Normalization Method (정규화법을 이용한 원전배관 용접부의 동하중 파괴저항시험)

  • Huh, Yong;Cho, Sung-Keun;Park, Jae-Sil;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.262-267
    • /
    • 2004
  • The unloading compliance method is the most commonly used method to evaluate the fracture resistance characteristics of a material. In dynamic loading condition, the direct current potential drop(DCPD) method has been used because the unloading compliance method can not be applied due to the discontinuity of loading. However, even in the dynamic test using DCPD method, there is a problem that the voltage drops sharply on the initiation of crack. For the reason metioned above, the normalization method was suggested on ASTM E 1820 which is revised recently, as a new method to evaluate the dynamic fracture resistance characteristic. The nomalization method can be used to obtain a fracture resistance curve directly from a load-load line displacement. In this study, we obtained two fracture resistance curves from static test of welding part of nuclear piping both by unloading compliance and nomalization method. The two curves were almost same each other, so the adaptability of the nomalization method has been proved. We conducted a dynamic fracture resistance test for the same material. The fracture resistance curve from the dynamic test was obtained by normalization method and compared to that of the static test result.

  • PDF

Evaluation of Liquefaction Resistance Strength based on the Cyclic Triaxial Tests using Real Earthquake Loading (실지진하중의 진동삼축시험에 기초한 액상화 저항강도 산정)

  • 심재욱;김수일;최재순;박근보
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.67-74
    • /
    • 2002
  • An experimental assessment on the dynamic behavior of saturated sand which can consider the irregular characteristics of earthquakes was proposed. The equivalent uniform stress concept presented by Seed and Idriss has been applied to evaluate the liquefaction resistance strength to simplify earthquake loading. However, it was known that the liquefaction resistance strength of soil based on the equivalent uniform stress concept can't exactly mirror the dynamic characteristics of the irregular earthquake motion. In this study, estimation of the criterion of the liquefaction resistance strength was determined by applying real earthquake loading to the cyclic triaxial test. From the test results, relationships between excess pore water pressure and the earthquake characteristics such as magnitude or duration were determined. Magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were also proposed.

  • PDF

Estimation of Nugget Size in Resistance Spot Welding Processes Using Artificial Neural Networks (저항 점용접에서 인공신경회로망을 이용한 용융부 추정에 관한 연구)

  • 최용범;장희석;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.393-406
    • /
    • 1993
  • In resistance spot welding process, size of molten nuggest have been utilized to assess the integrity of the weld quality. However real-time monitoring of the nugget size is an extremely difficult problem. This paper describes the design of an artificial neural networks(ANN) estimator to predict the nugget size for on-line use of weld quality monitoring. The main task of the ANN estimator is to realize the mapping characteristics from the sampled dynamic resistance signal to the actual negget size through training. The structure of the ANN estimator including the number of hidden layers and nodes in a layer is determined by an estimation error analysis. A series of welding experiments are performed to assess the performance of the ANN estimator. The results are quite promissing in that real-time estimation of the invisible nugget size can be achieved by analyzing the dynamic resistance signal without any conventional destructive testing of welds.

Negative Dynamic Resistance and RF Amplification in Magnetic Tunnel Junctions

  • Tomita, Hiroyuki;Maehara, Hiroki;Nozaki, Takayuki;Suzuki, Yoshishige
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.140-144
    • /
    • 2011
  • We report on a numerical calculation study of two new functional properties in magnetic tunnel junctions (MTJs), negative dynamic resistance and RF amplification. The magnetic dynamics in a conventional CoFeB/MgO/CoFeB MTJ with in-plane magnetization was investigated using a macro-spin model simulation. To examine the influence of thermal fluctuations, random external magnetic fields were also included. Using a voltage controlled bias circuit, the negative dynamic resistance was obtained from time averaged I-V characteristics at both 0 K and 300 K under appropriate external magnetic fields and bias voltages. Using this negative dynamic resistance property, we demonstrated RF amplification with a 100 MHz high frequency signal. Sizable RF amplification gain was observed without thermal fluctuation. However, at 300 K, the RF signal was not amplified because low frequency magnetization dynamics were dominant.

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Innovation Resistance Model of Sustainable SCM: Mediating Effect on Dynamic Capability

  • Da-Sol Lee
    • Journal of Korea Trade
    • /
    • v.27 no.3
    • /
    • pp.87-102
    • /
    • 2023
  • Purpose - Although the importance and necessity of "sustainable supply chain management (SCM)" is emphasized, it is often not realized due to conflicting results, the long time required, and large-scale changes brought about by sustainability. This study used the innovation resistance model to confirm the influence of sustainable SCM innovation resistance factors and dynamic capabilities on adoption intentions. This approach made it possible to understand the factors that hinder adoption of sustainability practices and to identify the relationships among influencing factors. It should also help to establish effective policies or strategies. Design/methodology - Through a literature review, the characteristics of sustainable SCM were classified into relative advantage, compatibility, perceived risk, and complexity. The effects of these innovation characteristics on innovation resistance in sustainable SCM and the effects of innovation resistance on adoption intentions were confirmed. In addition, the effects of SCM capabilities on innovation resistance and adoption intentions were analyzed, and the mediating effect of innovation resistance was analyzed. Findings - Compatibility, perceived risk, and flexibility had significant effects on innovation resistance. In turn, innovation resistance had a significant effect on adoption intention, and flexibility had a significant effect on intention to adopt. A partial mediating effect of resistance to innovation was confirmed. Originality/value - Although many previous studies have acknowledged trade-offs with sustainability, most sustainable SCM studies dealt with the correlations among positive drivers of adoption, practices, and performance. This study confirmed the process of accepting sustainable SCM innovation in a single model and is expected to serve as a cornerstone for future sustainable SCM adoption studies. In addition, our findings should help establish effective policies or strategies to activate SSCM adoption by identifying the factors that hinder the adoption of sustainable SCM.

Experimental Study on the Effect of Particle Size Distribution of Soil to the Liquefaction Resistance Strength (입도분포가 액상화 저항강도에 미치는 영향에 관한 실험적 연구)

  • Choi, Mun-Gyu;Seo, Kyung-Bum;Park, Seong-Yong;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1126-1133
    • /
    • 2005
  • The effects of mean particle size and uniformity coefficient of dredged soils to the liquefaction resistance strength and dynamic characteristics are experimentally studied in this paper. Representative 4 mean particle sizes and 3 uniformity coefficients were selected and 12 representative particle size distribution curves which have different mean particle sizes and uniformity coefficients, were artificially manufactured using the real dredged river soil. Cyclic triaxial tests and torsional shear tests were carried out to analyze the effect of mean particle size and uniformity coefficient to the liquefaction resistance strength and dynamic characteristics of soils.

  • PDF