• Title/Summary/Keyword: Dynamic replacement

Search Result 130, Processing Time 0.025 seconds

Estimation of the Dynamic Load of the Utility in Building by TPA Method (건물 바닥 구조 해석 모드의 튜닝)

  • Jeong, Min-Ki;Kwon, Hyung-O;Kim, Hyo-Beom;Lee, Jeong-Ha;Lee, Sang-Yeop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.441-446
    • /
    • 2008
  • The source transfer receiver model ('Source $\times$ Transfer = Response' model) which is widely used by NVH development process of vehicle/transport/machinery to analyze effectively and manage efficiently the structural dynamic behavior is also applicable to construction structure. If the evaluation assessment of the vibration level does not meet the target level, there are two methods, one is source treatment or replacement and the other is the reduction treatment on the transfer structure. In case of source treatment, it is done by source supplier and so, the latter is more practical method to reduce the vibration level. In this study, in order to get the accurate Transfer FE model(floor structure FE model), Experimental modal analysis of part of floor structure and FEM modal analysis of full floor structure are performed, then updating of FE model is performed after correlation analysis between these two results and finally, the modal model and FRF are compared between FE and Experimental results.

  • PDF

A Study of renewable energy optimal design using the LCC analysis (LCC분석 기법을 활용한 신재생에너지 최적 설계 방안 연구)

  • Song, Ho-Yeol;Kim, Jeong-Uk
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • In Korea ranking sixth out of The world's greenhouse gas emissions, all Korean public buildings have to implement obligatorily renewable energy systems for energy production to reduce the greenhouse gas emissions from the energy consumed in operation, maintenance and management of buildings. The optimum combination and application rates for each energy source emerge from analyzing the trend of previous studies and the energy consumption is simulated by using a dynamic energy simulation program and the initial investment costs, the energy costs, the maintenance costs, the replacement costs emerge based on the calculated result. The result show that the total life cycle cost of 100% gerthermal is the lowest with \ 2,105,974,344 on the analysis results.

Effect of fly ash and plastic waste on mechanical and durability properties of concrete

  • Paliwal, Gopal;Maru, Savita
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.575-586
    • /
    • 2017
  • The disposal of polythene waste and fly ash is causing serious threat to the environment. Aim of this study is to decrease environmental pollution by using polythene waste and fly ash in concrete. In this study, cement was partially replaced with 0%, 5%, 10%, 15% and 20% fly ash (by weight) and plastic waste was added in shredded form at 0.6% by weight of concrete. The specimens were prepared for the concrete mix of M25 grade and water to cementitious material ratio (w/c) was maintained as 0.45. Fresh concrete property like workability was examined during casting the specimens. Hardened properties were found out by carrying out the experimental work on cubes, cylinders and beams which were cast in laboratory and their behavior under test were observed at 7 & 28 days for compressive strength and at 28 days for density, flexural strength, dynamic modulus of elasticity, abrasion resistance, water permeability and impact resistance. Overall results of this study show that addition of 0.6% (by weight of the concrete) plastic waste with 10% (by weight of cement) replacement of cement by fly ash result an improvement in properties of the concrete than conventional mix.

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.

Operation of Ascending Aorta and/or Aortic Arch (상행대동맥 및 대동맥궁의 수술)

  • 구본원;허동명;전상훈;장봉현;이종태;김규태;이응배
    • Journal of Chest Surgery
    • /
    • v.29 no.11
    • /
    • pp.1212-1217
    • /
    • 1996
  • From Dec. 1993 to May 1995, 9 male and 5 female patients ranging in age from 25 to 65 years, were operated on for ascending aorta and/or aortic arch diseases. Six patients had acute aortic dissection, type A(ruptured in 4 cases); four had ruptured ascending aortic aneurysm; three had annuloaortic ectasia(ruptured in 1 cases); one had aortic arch aneurysm. The diagnostic procedures were echo cardiography and dynamic CT scan in all patients having acute dissection or rupture. The aortic angiography was performed in two cases. Indications for operations were rupture in five cases, acute aortic dissection in five cases, severe congestive heart failure in two cases, progressive aortic insufficiency in one case and impending rupture in one case. The emergent repair was performed in ten cases(71%). The surgical treatment consisted of 6 Cabrol operations, a Cabrol operation combined with arch replacement, a modified Bentall operation, 4 replacement of ascending aorta, a replacement of aortic arch, and a replacement of ascending aorta and aortic arch. Complications were a hypoxic encephalopathy, two atrial fibrillations, a sternal deheiscence, and a mediastinitis. Two early mortality(14%) were due to intractable bleeding and multiple organ failure, and one late mortality(7%) was due to ventricular arrhythmia. In eleven survivors, follow-up period was from 2 months to 12 months and the course was uneventful.

  • PDF

Dynamic Behavior of Sleeper Floating Track System(STEDEF) on Urban Rapid Transit According to Replacement of Resilience Pad (도시철도 침목플로팅궤도(STEDEF) 침목방진패드 교체에 따른 동적 거동)

  • Choi, Jung-Youl;Bong, Jae-Gun;Lee, Jeong-sug;Han, Jae-Min;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.335-340
    • /
    • 2020
  • The purpose of this study was to compare the dynamic behavior of STEDEF track that of the sleeper floating track on urban rapid transit according to replacing the resilience pads and analyze the necessity of replacing the resilience pads experimentally. It was analyzed that the uniformity of the track support stiffness could be secured by replacing the used resilience pads with new resilience pads. Therefore, by replacing the used resilience pads, the measured track impact factor was found to be dramatically reduced below the track design standard, and it was analyzed that the track support stiffness could be restored to the design value. As a results, it is possible to restore track support stiffness to the design value and reduce track impact factor by replacing timely resilience pads, which is important to securing durability and improving service life of track components.

Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

  • Kaewunruen, Sakdirat
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.131-157
    • /
    • 2014
  • Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

Performance and Power Consumption Improvement of Embedded RISC Core (임베디드 RISC 코어의 성능 및 전력 개선)

  • Jung, Hong-Kyun;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.453-461
    • /
    • 2010
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of embedded RISC core and a clock-gating algorithm using ODC (Observability Don't Care) operation to improve the power consumption of the core. The branch prediction algorithm has a structure using BTB(Branch Target Buffer) and 4-way set associative cache has lower miss rate than direct-mapped cache. Pseudo-LRU Policy, which is one of the Line Replacement Policies, is used for decreasing the number of bits that store LRU value. The clock gating algorithm reduces dynamic power consumption. As a result of estimation of performance and dynamic power, the performance of the OpenRISC core applied the proposed architecture is improved about 29% and dynamic power of the core using Chartered $0.18{\mu}m$ technology library is reduced by 16%.

Economic and Environmental Impact of the Bioplastics Industry: A Recursive Dynamic CGE Approach (바이오플라스틱산업의 경제적·환경적 파급효과: 축차동태 연산가능일반균형모형 적용)

  • Son, Wonik;Hong, Jong Ho
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.269-297
    • /
    • 2021
  • Bioplastics are attracting attention as a substitute for conventional petroleum-based plastics because they are carbon neutral and can be biodegradable. This study estimated economic and environmental impact of regulating the petroleum-based plastics industry and fostering the bioplastics industry using a Recursive Dynamic CGE Model of the Korean Economy. Results show that the regulation of the conventional plastics industry exhibits a positive environmental impact by reducing greenhouse gases and plastic waste and a negative economic impact with a decrease in GDP. Meanwhile, fostering the bioplastics industry with regulation on conventional plastics industry has similar levels of greenhouse gas and waste reduction effects when there is only regulation on the conventional plastics industry. It is also shown that expanding the production of bioplastics industry offsets existing economic losses as a form of increased GDP. If petroleum-based plastics are replaced through the expansion of bioplastics production, it can contribute to the decoupling of greenhouse gas emissions and plastic waste from economic growth.

Seismic Stability Evaluation of the Breakwater Using Dynamic Centrifugal Model Test (동적원심모형 시험을 이용한 지진 시 방파제의 내진안정성 검토)

  • Kim, Young-Jun;Jang, Dong-In;Kawk, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.39-50
    • /
    • 2021
  • Recently, as the occurrence of earthquakes with a magnitude of 5.0 or higher in Korea increases, many studies and interests in seismic design are increasing. A lot of damage was caused by the Pohang earthquake in 2017, and port facilities such as a breakwater were also damaged. This study analyzed the dynamic behavior of the upright breakwater, an external facility, based on a centrifugal model experiment. A series of centrifugal model test was conducted by three different seismic waves such as Pohang Earthquake Wave, Artificial Wave I, and II. As a result, the dynamic behavior of upright breakwater was analyzed. The review showed that acceleration amplification tends to be suppressed as breakwater foundation ground increases support and stiffness through DCM reinforcement and riprap replacement.