• Title/Summary/Keyword: Dynamic process model

Search Result 1,422, Processing Time 0.035 seconds

Prediction of Surface Topography by Dynamic Model in High Speed End Milling (고속 엔드밀 가공시 동적 모델에 의한 표면형상 예측)

  • Lee, Gi-Yong;Ha, Geon-Ho;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1681-1688
    • /
    • 2000
  • A dynamic model for the prediction of surface topography in high speed end milling process is developed. In this model the effect of tool runout, tool deflection and spindle vibration were taken in to account. An equivalent diameter of end mill is obtained by finite element method and tool deflection experiment. A modal parameter of machine tool is extracted by using frequency response function. The tool deflection, spindle vibration chip thickness and cutting force were calculated in dynamic cutting condition. The tooth pass is calculated at the current angular position for each point of contact between the tool and the workpiece. The new dynamic model for surface predition are compared with several investigated model. It is shown that new dynamic model is more effective to predict surface topography than other suggested models. In high speed end milling, the tool vibration has more effect on surface topography than the tool deflection.

Improved DMC for the integrating process (적분 공정 제어를 위한 향상된 DMC)

  • 강병삼;한종훈;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1120-1123
    • /
    • 1996
  • DMC(Dynamic Matrix Control) algorithm has been successfully used in industries for more than a decade. It can handle constraints and easily extended to MIMO case. The application of DMC, however, is limited to the open loop stable process because it uses the FIR(Finite Impulse Response) or FSR(Finite Step Response) model. Integrating process widely used in chemical process industry, is the representative open loop unstable process. The disturbance rejection of DMC is relatively poor due to the assumption that the current disturbance is equivalent to the future disturbance. We propose the IDMC(Improved Dynamic Matrix Control) for the integrating process, as well as non-integrating process. IDMC has shown better disturbance rejection using multi-step ahead predictor for the disturbance.

  • PDF

Characteristics of the Bundle Drawing Process by Random Phase Spectrum Method (임의 위상스펙트럼(RPS)법에 의한 집속인발 공정의 특성연구)

  • Huh You;Kim Jong-S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.201-202
    • /
    • 2006
  • To analyze the dynamic characteristics of the bundle drawing process, we employed a Random Phase Spectrum method to generate stochastic test signals that had a given autocorrelation function. And the spectra of the dynamics of the process outputs were obtained, based on the dynamic model of the bundle drawing process. Results showed that the RPS method was very effective to generate stochastic signals that had an exponential function form. The drawing process had the traits that there existed a special frequency range, incurring the process resonance.

  • PDF

Development of a Cutting Force Monitoring System for a CNC Lathe (CNC 선반에서의 절삭력 감지 시스템 개발)

  • Heo, Geon-Su;Lee, Gang-Gyu;Kim, Jae-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.219-225
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

Dynamic Simulation of Retention and Formation Processes of a Pilot Paper Machine

  • Cho, Byoung-Uk;Garnier, Gil;Perrier, Michel
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.8-15
    • /
    • 2007
  • In an effort to develop control strategies for the wet-end of paper machines, dynamic models for retention and formation processes have been developed. The retention process, including headbox total and filler consistencies, white water total and filler consistencies, the basis weight and the ash content of paper, can be modeled from first-principles (mass balances). To include the effect of wet-end chemistry variables, first-pass retention was included as a parameter dependent on operating conditions. In addition, dynamics of formation was simulated by developing an empirical model of formation and coupling with the dynamic models for the retention process. A series of experiments were performed using a pilot paper machine. The experimental results and the model predictions showed relatively good agreement.

Prediction of Serrated Chip Formation due to Micro Shear Band in Metal (미소 전단 띠 형성에 의한 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.427-733
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy. The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5T$\sub$m/. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.

  • PDF

Prediction of Serrated Chip Formation in High Speed Metal Cutting (고속 절삭공정 중 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.358-363
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5Τ$_{m}$. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.s.

Assessment of Hot Deformation and Grain Size Distribution in a Udimet 720Li Pancake (Udimet 720Li 합금의 고온변형 및 결정립분포 예측)

  • 염종택;나영상;박노광
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.538-546
    • /
    • 2002
  • Hot deformation behavior of Udiment720Li was characterized by compression tests in the temperature range of 10$25^{\circ}C$ to 115$0^{\circ}C$ and the strain rate range of $0.0005 s^{-1};to;5 s^{-1}$. The combination of dynamic material model (DMM) and Ziegler's instability criterion was applied to predict an optimum condition and unstable regions for hot forming. A dynamic recrystallization model coupled with FEM results was used to interpret the evolution of microstructures. In order to verify the reliability of the present coupled model, isothermal forging was performed in the temperature range 1050~115$0^{\circ}C$ at strain rates of $0.05 s^{-1};and;0.005 s^{-1}$. The present model was successfully applied to the hot forming process of Udimet720Li.

A Dynamic Analysis of Technological Innovation Using System Dynamics (시스템 다이나믹스를 이용한 기술혁신의 동태성 분석)

  • Choi Kang-Hwa;Kwak Soo-Il;Kim Soo-Wook
    • Korean Management Science Review
    • /
    • v.23 no.1
    • /
    • pp.87-113
    • /
    • 2006
  • This paper describes a comprehensive approach to examine how technological innovation contributes to the renewal of the firm's competences through its dynamic and reciprocal relationship with R&D and product commercialization. Three theories of technology and innovation (R&D and technological knowledge concept, product-process concept, technological interdependence concept) are used to relate technology and innovation to strategic management. Based on those theories, this paper attempts to identify dynamic relationship between product innovation and process innovation by system dynamics, by investigating the aspect of the dynamic changes of the closed feedback circulation structure in which R&D investments drive technological knowledge accumulation, and such knowledge accumulation actualizes product innovation and process innovation, subsequently resulting in the increase of productivity, customer satisfaction, profit generation, and re-investment on R&D from the created profits. This provides the ability to assess the advantages and disadvantages of different technological innovation strategies and commitments, and the opportunity to explore equilibrium point and suggest a generalized technological innovation model under different industry environment parameters and time-strategies.

Analysis of Slider Dynamics in Loading Process considering Collision (충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석)

  • Kim, Bum-Joon;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • Dynamic L/UL(Load/Unload) system has many merits. but it may happen an undesirable collision during the dynamic loading process. In this paper, the dynamics of negative pressure pico-slider was investigated through numerical simulation during the loading process. A simplified L/UL model for the suspension system has been presented and a simulation code has been developed to analyze the motion of the slider. A slider design has been simulated at various disk rotating speeds, skew angles of slider. We can decrease the possibility of collision and smoothen the loading process for a given slider-suspension design by selection an optimal rpm and pre-skew angle.

  • PDF