• 제목/요약/키워드: Dynamic movement

검색결과 982건 처리시간 0.027초

개폐식 지붕구조의 움직임에 대한 공간구조물의 진동해석 (Vibration Analysis of Space Structure with Retractable Roof)

  • 김기철;강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제11권1호
    • /
    • pp.113-120
    • /
    • 2011
  • 지붕구조의 개폐가 가능한 체육시설 및 복합시설은 대공간구조물의 장점을 잘 나타내고 있으며 대공간구조물의 전천후 사용이 가능하도록 하였다. 개폐식 지붕구조는 구조형식, 마감재료, 개폐방식에 따라서 매우 다양하며 개폐방식에 따라서 중첩방식, 수평이동방식, 주름접기방식 등으로 구분할 수 있다. 특히 중첩방식이나 수평이동방식에 의한 지붕구조의 움직임은 주행하중, 충격하중, 관성력 및 제동력과 같은 동적하중이 구조물에 가해질 수 있으므로 이에 대한 대공간구조물의 진동해석이 필요할 것으로 사료된다. 지붕구조의 움직임에 의한 주행하중은 이동질량 또는 이동하중으로 적용할 수 있으나 비교적 움직임이 느린 개폐식 지붕구조에 의한 동적하중은 아동하중으로 적용하는 것이 타당하다. 따라서 본 논문에서는 지붕구조의 개폐로 야기되는 이동하중에 대한 새로운 적용방법을 제안하고 이를 이용하여 개폐식 지붕의 개폐속도에 따른 대공간구조물의 진동해석을 수행하였다. 본 논문에서 제안된 등가 이동하중은 지붕구조 개폐에 의한 대공간구조물의 진동해석에 있어서 매우 용이하게 활용할 수 있다.

Distribution of Inter-Contact Time: An Analysis-Based on Social Relationships

  • Wei, Kaimin;Duan, Renyong;Shi, Guangzhou;Xu, Ke
    • Journal of Communications and Networks
    • /
    • 제15권5호
    • /
    • pp.504-513
    • /
    • 2013
  • Communication in delay tolerant networks (DTNs) relies on message transport by mobile nodes, and a correct understanding of the node mobility characteristics is therefore crucial to the design of an efficient DTN routing protocol. However, previous work has mainly focused on uncovering all behaviors of node movement, which is not conducive to accurately detecting the specific movement characteristics of a different node. In this paper, we seek to address this problem based on a consideration of social relationships. We first consider social ties from both static and dynamic perspectives. For a static perspective, in addition to certain accidental events, social relations are considered for a long time granularity and tend to be stable over time. For a dynamic perspective, social relations are analyzed in a relatively short time granularity and are likely to change over time. Based on these perspectives, we adopted different efficient approaches to dividing node pairs into two classes, i.e., familiar and unfamiliar pairs. A threshold approach is used for static social ties whereas a density-based aggregation method is used for dynamic social relationships. Extensive experimental results show that both familiar and unfamiliar node pairs have the same inter-contact time distribution, which closely follows a power-law decay up to a certain point, beyond which it begins to exponentially decay. The results also demonstrate that the inter-contact time distribution of familiar pairs decays faster than that of unfamiliar pairs, whether from a static or dynamic perspective. In addition, we also analyze the reason for the difference between the inter-contact time distributions of both unfamiliar and familiar pairs.

집속체 유동계의 모델링과 운동 특성해석 (Modeling and Analysis of Dynamic Characteristic for Bundle Fluid System)

  • 김종성;허유;김윤혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1643-1646
    • /
    • 2003
  • Drawing is a mechanical operation that attenuates thick material to an appropriate thickness for the next processing or end usage. When the input material has the form of a bundle or bundles made of very thin and long shaped wire or fibers, this attenuation operation is called "bundle drawing" or "drafting" Drafting is being used widely in manufacturing staple yarns. which is indispensable for the textile industry. However, the bundle processed by this operation undertake more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. Since long there have been many researches tying to find out factors affecting the irregularity of linear desity, to obtain optimal drafting conditions, to develop efficient measuring and analysis methods of linear density of bundle, etc., but there exists yet no fundamental equation describing the dynamic behavior of the flowing bundle during processing. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical lows representing physical variables, i.e. linear density and velocity as the dynamic state of bundle. The conservation of mass and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.

  • PDF

선형가속기의 동적쐐기(EDW) 작동에 대한 품질보증 (Quality Assurance of Operation of Enhanced Dynamic Wedges in Linac)

  • 정동혁;김진기;강정구;손광재;이정옥
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제33권2호
    • /
    • pp.133-141
    • /
    • 2010
  • 선형가속기의 동적쐐기(enhanced dynamic wedge: EDW)의 품질보증을 위하여 다양한 방법으로 동적쐐기의 특성을 평가하였다. 본 연구에서는 6 MV와 15 MV 엑스선에 대하여 각각 7종(10, 15, 20, 25, 30, 45, 60도)의 EDW를 평가하였다. EDW 작동에 필요한 STT(segmented treatment table)를 계산으로 구하고 로그파일을 통하여 기계적 작동을 평가하였으며, 이차원배열형검출기와 전리함을 사용하여 팬텀속 선량분포를 측정하고 치료계획시스템(RTP)과 비교하였다. EDW의 기계적 작동은 예상과 잘 일치하였으며, 빔측면도를 포함한 이차원선량분포는 근사적으로 RTP 계산과 일치하였다. 선형가속기 조사량 100 MU에 대한 출력선량은 RTP 계산과 2.9% 이내로 일치하였으며, 측정된 쐐기인자는 RTP 계산과 최대 2.6%를 보였다. 이 결과들은 본 선형가속기에 장착된 EDW의 임상적 적용에 문제가 없음을 의미한다.

뒤꿈치 들기 자세를 이용한 전신진동 운동이 외발서기 시 근신경 반응에 미치는 영향 (Effects of Consecutive whole Body Vibration Exercise using Heel Raise Posture on Neuromuscular Response during Single-leg Stance)

  • Kim, Dae Dong;Lee, Myeounggon;Youm, Changhong
    • 한국운동역학회지
    • /
    • 제31권2호
    • /
    • pp.104-112
    • /
    • 2021
  • Objective: This study aimed to analyze the effects of consecutive whole body vibration through heel raise posture on the center of pressure and electromyography of anterior tibial muscle, lateral gastrocnemius and soleus muscles during single-leg stance. Method: The subjects of this study included 30 healthy males in their 20's, with the following inclusion criteria: no history of orthopaedic medical history, no participation in regular exercises, no history of whole body vibration exercise, and right leg being the dominant leg. The experimental procedure involved pretreatment measurement of eye open single-leg stance, application of whole body vibration for 30 seconds, post-treatment measurement (3 measurements in total). Static and dynamic movements have been measured over 2 separate experiments, with 72 hours gap between the experiments. Static movement involved maintaining single-leg heel raise posture for 30 seconds while applying whole body vibration, and dynamic movement involved heel raise (15 repetitions over 30 seconds) while applying whole body vibration. The strength of applied whole body vibration was 35 Hz frequency and 2~4 mm amplitude. Results: As the single-leg posture after static heel raise posture, mediolateral velocity of the center of pressure at post 2 and post 3 were significantly reduced compared to the pre-treatment measurement. In addition, the percentage for reference voluntary contraction in anterior tibial muscle and soleus and median frequency at anterior tibial muscle and lateral gastrocnemius muscle at post 3 were significantly decreased compared to the pre-treatment value. As the single-leg posture after dynamic heel raise posture, the mediolateral 95% edge frequency of the center of pressure and median frequency at anterior tibial muscle, lateral gastrocnemius muscle, and soleus muscle at post 3 were significantly reduced compared to the pre-treatment value. Conclusion: Acute whole body vibration via static and dynamic heel raise posture have positive effect on mediolateral posture control during single-leg stance.

신발 착용 유무에 따른 20대 성인의 동적 균형 및 다리의 근활성도 변화 비교 (Comparison of Changes in Dynamic Balance and Leg Muscle Activity in Adults in Their 20s With or Without Shoes)

  • 안수홍;이수경;양주희;조재성;박진성
    • PNF and Movement
    • /
    • 제19권2호
    • /
    • pp.153-162
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate the difference in the dynamic balance and leg muscle activity of adults in their 20s with or without shoes. Methods: In this study, seven male and 11 female university students in their 20s were randomized to determine the order of being with or without shoes, and the dominant foot was supported on the central platform of dynamic balance according to the order procedure. Using the opposite foot, the distance of leg stretching in the anterior, posterior medial, and posterior lateral directions and the muscle activity of the supporting leg were measured. Muscle activity measurement sites were attached to the dominant vastus medialis oblique muscle, vastus lateral oblique muscle, tibialis anterior muscle, peroneus longus muscle, and lateral gastrocnemius muscle. Results: As a result of this study, the distance of leg stretching was significantly increased in the anterior, posterior medial, and posterior lateral directions when barefoot rather than when wearing shoes (p < 0.05). The muscle activity of the vastus medial and lateral oblique muscles was significantly increased in all three directions when barefoot rather than when wearing shoes (p < 0.05). The muscle activity of the tibialis anterior was significantly increased in the anterior direction when barefoot (p < 0.05), the peroneus longus muscle was significantly increased when it was barefoot in the posterior medial direction (p < 0.05), and the lateral gastrocnemius muscle activity significantly increased when barefoot in the posterior direction (p < 0.05). Conclusion: The movement of the legs is freed when barefoot as compared to when wearing shoes, and being barefoot can effectively activate muscle activity and improve balance ability.

Applying Fishing-gear Simulation Software to Better Estimate Fished Space as Fishing Effort

  • Lee, Ji-Hoon;Lee, Chun-Woo;Choe, Moo-Youl;Lee, Gun-Ho
    • Fisheries and Aquatic Sciences
    • /
    • 제14권2호
    • /
    • pp.138-147
    • /
    • 2011
  • Modeling fishing-gear systems is essential to better understand the factors affecting their movement and for devising strategies to control movement. In this study, we present a generalized mathematical modeling methodology to analyze fishing gear and its various components. Fishing gear can be divided into a finite number of elements that are connected with flexible lines. We use an algorithm to develop a numerical method that calculates precisely the shape and movement of the gear. Fishinggear mathematical models have been used to develop software tools that can design and simulate dynamic movement of novel fishing-gear systems. The tool allowed us to predict the shape and motion of the gear based on changes in operation and gear design parameters. Furthermore, the tool accurately calculated the swept volume of towed gear and the surrounding volume of purse-seine gear. We analyzed the fished volume for trawl and purse-seine gear and proposed a new definition of fishing effort, incorporating the concept of fished space. This method may be useful for quantitative fishery research, which requires a good understanding of the selectivity and efficiency of fishing gear used in surveys.

Electromyographic Analysis of Lower Extremity Lateral Stabilizer During Upper Extremity Elevation Movements

  • Jung, Ho-Bal
    • 국제물리치료학회지
    • /
    • 제1권2호
    • /
    • pp.185-191
    • /
    • 2010
  • Background: This study investigated effective posture for gluteus medius rehabilitation training and effects of isometric muscle activity by electrophysiology through EMG while performing dynamic isotonic behavior of weight placed differently on upper limbs. Method: 16 healthy male subjects 20 to 29 years of age volunteered for the study. Lateral stabilizer right gluteus medius activity was assessed using EMG while the right lower extremity maintains single limb support, and the left upper extremity elevation movement maintains 5 seconds without load, 1RM to 1 repetition, 5RM to 5 times, 10RM to 10 times, 5RM and 10RM maintain 5sec. Results: Comparison of the mean value of EMG data showed a statistically more significant difference in upper extremity elevation movement on opposite upper extremity added weight than one that was not added on a single limb weight bearing posture(p>.05). Weight supported side gluteus medius activity for 1RM, 5RM, 10RM weight difference and movement repetition did not differ(p>.05). Comparison in maximum value showed statistically significant differences in not adding weight on upper limb elevation exercise and 1RM, 5RM, 10RM repeated behavior. Elevation behavior and repetition appeared over 70% of MVIC. Conclusion: Unilateral weight bearing stance added weight in the opposite upper limb elevation movement was an indirect exercise to effectively stimulate gluteus medius activity. Applying various added weight will have effective exercise on the early stages of rehabilitation because activity gluteus medius did not differ through added weight.

  • PDF

심지융착기의 압착벨트 운동에 대한 연구 (A Study on the Press Belt Motion in the Fusing Press M/C)

  • 허유;안성기;장승호
    • 한국염색가공학회지
    • /
    • 제17권5호
    • /
    • pp.53-60
    • /
    • 2005
  • Fusing press m/c is used for heating and pressing the specimens that are fed into between the two moving belts. Therefore the belt movement, belt temperature, and the pressure between belts must be kept constant. Especially, the belts should move in a limited operation range. When the belts run far out of the operation point, the machine has to be stopped, which results in a product defect because the fusing conditions, e.g., temperature and pressure, change during the transient process time period. It is important to avoid the belt stopping by maintaining the belt movement in a limited range. This study reports about the movement of the endless fusing belt in a long-span roller fusing m/c. The belt position changes as the 1st-order system does; if the roller axes are slanting each other with a certain angle, the belt running around the two rolls shows a dynamic behavior with the time that deviates fastly at the beginning from the initial condion and slows down. Then it reaches at a final position. The skewer the axes, the greater the position change. The inital change rate of the belt becomes large as the skewness of the axes between the two rollers increases.

Visual Precise Measurement of Pile Rebound and Penetration Movement Using a High-Speed Line-Scan Camera

  • Lim, Mee-Seub;You, Bum-Jae;Oh, Sang-Rok;Han, Song-Soo;Lee, Sang-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.341-346
    • /
    • 2002
  • When a construction company builds a high structure. many piles should be driven into the ground by a hammer whose weight is 7,000 kg in order to make the ground under the structure safe and strong. So. it is essential to determine whether a pile is penetrated into the ground enough to support the weight of the structure since ground characteristics at different locations are different each other. This paper proposes a visual measurement system for pile rebound and penetration movement including vibration using a high-speed line-scan camera and a specially designed mark to recognize two-dimensional motion parameters of the mark using only a line-scan camera. A mark stacking white and black right-angled triangles is used for the measurement, and movement information for vertical distance, horizontal distance and rotational angle is determined simultaneously. Especially- by adopting a line-scan CCD camera whose line rate is 20 ㎑. the measurement performance of dynamic characteristics of the pile at impact instant is improved dramatically.