• Title/Summary/Keyword: Dynamic immersion

Search Result 57, Processing Time 0.028 seconds

Fundamental Properties of Asphalt Concrete Mixture as Using TDF Fly Ash as Mineral Filler (아스팔트 콘크리트 채움재로 TDF Fly Ash 적용에 따른 아스팔트 혼합물 기초 물성 평가)

  • Choi, Min-Ju;Kim, Hyeokjung;Kim, Yongjoo;Lee, Jaejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • TDF (Tire derived fuel) Fly ash is an industrial by-product when scraped tire was used a fuel source at the power plant. TDF Fly ash has been classified as domestic waste at the workplace so far and has not been appropriately utilized. We conducted a fundamental physical property test of asphalt mixture to investigate the possibility of using TDF Fly ash as a mineral filler of asphalt mixture for exploring new usage strategies. TDF Fly ash meets KS F 3501 asphalt mixture mineral filler criteria. And the optimal asphalt binder amount was determined to be 4.5% by Marshall design. Mineral filler content was determined at 3% and analyzed by comparing using mineral filler as stone powder. The basic physical property test of the asphalt mixture was evaluated to the provision indicated in "Production and Construction Guidelines for Asphalt Mixture" published by the Ministry of Land, Infrastructure and Transport. In the test, Marshall stability test, dynamic immersion test, tensile strength ratio test, wheel tracking test were carried out. As a result of the experiment, Marshall stability and dynamic stability satisfied the standards, and confirmed the stability and Dynamic immersion and tensile strength ratio test that TDF Fly ash is more effective for scaling and moisture resistance than stone dust. Therefore, in this research, it is expected that multilateral utilization of TDF Fly ash, and a positive effect can be also expected.

A Study on Assembly and Evaluation of SIL optical Head for surface Recording of SIL based NFR (고체침지렌즈 기반 근접장 표면 기록을 위한 고체침지렌즈 광학 헤드의 조립 및 평가에 대한 연구)

  • Min, Cheol-Ki;Kim, Tae-Seob;Yoon, Yong-Joong;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.4 no.1
    • /
    • pp.19-22
    • /
    • 2008
  • For the assembly and evaluation of solid immersion lens (SIL) optical head which is the key component of SIL based near field recording (NFR) technology, we modify the Twyman-Green interferometer. Super-hemisphere SIL optical head for the surface recording is assembled and evaluated by the modified Twyman-Green interferometer. In order to verify the optical performance of the assembled SIL optical head, we compare the measured results of the SIL optical head with the simulation ones. Finally, we show the feasibility of applying the assembled SIL optical head to near field recording system by the experiment of the dynamic gap control based on test bed.

  • PDF

Durability of Fiber Reinforced Composites under Salt Water Environments (염수환경을 고려한 섬유강화 복합재의 내구성 평가)

  • Yoon Sung-Ho;Hwang Young-Eun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.391-396
    • /
    • 2005
  • Salt water spray test and salt water immersion test were experimentally conducted in order to investigate the durability of fiber reinforced composites under salt water environment. The specimens were made of glass fabric reinforcement and phenolic resin. Mechanical test was performed to obtain mechanical properties such as tensile properties, flexural properties, and shear properties by varying with exposure times. Also dynamic mechanical test and FTIR were conducted to investigate a change in chemical structure as well as thermal analysis properties such as storage shear modulus, loss shear moduls, and tan ${\delta}$. According to the results, salt water environment has effected on mechanical properties and thermal analysis properties and especially the durability of glass fabric/phenolic composites were severely affected on salt water immersion environment rather than salt water spray environment.

  • PDF

Sheath analysis for a plasma immersion ion implantation (플라즈마 잠김 이온 주입에 대한 플라즈마 덮개의 해석)

  • 김영권;김영삼;조대근;최은하;조광섭
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.381-389
    • /
    • 1998
  • The time variation of an ion current density has been analyzed based on the plasma particle dynamic model for the plasma immersion ion implantation. The implanted ion current density has its maximum value at a particular time after sheath formation, and decays. The influence of the particle collisions, the capacitive time of the substrate, and the pulse formula has been represented on the implanted ion current.

  • PDF

An Experimental Study on the Seawater Resistance of Steel Fiber Reinforced Concrete (강섬유보강콘크리트의 내해수성에 관한 실험적 연구)

  • 박승범;오광진;장석호;이봉춘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.315-322
    • /
    • 1997
  • This paper describes an experimental study on the seawater resistance of steel fiber reinforced concrete. The test method adopted for this study may be devided into long-term immersion test and accelerated test by wetting and drying. Test were carried out to evaluate the procedure in which reduction in dynamic modulus, length change and compressive strength to nine months were measured. Resistance indicators are the water - cement ratio, the content of steel fiber, the immersion water(artificial seawater or freshwater). The conditions of intervals of immersing in artificial seawater and drying, low water-cement ratio, and non-steel fiber became most deteriorated.

  • PDF

Evaluation of TDF ash as a Mineral Filler in Asphalt Concrete (TDF ash를 채움재로 사용한 아스팔트 콘크리트 물성 평가)

  • Choi, MinJu;Lee, JaeJun;Kim, HyeokJung
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2016
  • PURPOSES : The new waste management policy of South Korea encourages the recycling of waste materials. One material being recycled currently is tire-derived fuel (TDF) ash. TDF is composed of shredded scrap tires and is used as fuel in power plants and industrials plants, resulting in TDF ash, which has a chemical composition similar to that of the fly ash produced from coal. The purpose of this study was to evaluate the properties of an asphalt concrete mix that used TDF ash as the mineral filler. METHODS : The properties of the asphalt concrete were evaluated for different mineral filler types and contents using various measurement techniques. The fundamental physical properties of the asphalt concrete specimens such as their gradation and antistripping characteristics were measured in accordance with the KS F 3501 standard. The Marshall stability test was performed to measure the maximum load that could be supported by the specimens. The wheel tracking test was used to evaluate the rutting resistance. To investigate the moisture susceptibility of the specimens, dynamic immersion and tensile strength ratio (TSR) measurements were performed. RESULTS : The test results showed that the asphalt concrete containing TDF ash satisfied all the criteria listed in the Guide for Production and Construction of Asphalt Mixtures (Ministry of Land, Infrastructure and Transport, South Korea). In addition, TDF ash exhibited better performance than that of portland cement. The Marshall stability of the asphalt concrete with TDF ash was higher than 7500 N. Further, its dynamic stability was also higher than that listed in the guide. The results of the dynamic water immersion and the TSR showed that TDF ash shows better moisture resistance than does portland cement. CONCLUSIONS : TDF ash can be effectively recycled by being used as a mineral filler in asphalt, as it exhibits desirable physical properties. The optimal TDF ash content in asphalt concrete based on this study was determined to be 5%. In future works, the research team will compare the characteristics of asphalt concrete as function of the mineral filler types.

Evaluation on Mechanical Properties of Polymer-Modified Warm-Mix Asphalt Mixtures for Monsoon Climate Regions (몬순기후형 중온 개질 아스팔트 혼합물의 역학적 물성 평가 연구)

  • Lee, Kanghun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.131-141
    • /
    • 2017
  • PURPOSES : The main distress of asphalt pavements in monsoon climate regions are caused by water damage and plastic deformation due to repeated rain season and increased heavy vehicle traffic volume. In this study, the mechanical properties of polymer-modified warm mix asphalt (PWMA) materials are evaluated to use in monsoon climate regions such as Indonesia. METHODS : Comprehensive laboratory tests are conducted to evaluate moisture resistance and permanent deformation resistance for three different asphalt mixtures such as the Indonesian conventional hot-mix asphalt (HMA) mixture, the polymer-modified asphalt mixture, and the polymer-modified warm mix asphalt (PWMA) mixture. Dynamic immersion test and indirect tensile strength ratio test are performed to evaluate moisture resistance. The wheel tracking test is performed to evaluate rutting resistance. Additionally, the Hamburg wheel tracking test is performed to evaluate rutting and moisture resistances simultaneously. RESULTS :The dynamic immersion test results indicate that the PWMA mixture shows the highest resistance to moisture. The indirect tensile strength ratio test indicates that TSR values of PWMA mixture, Indonesian PMA mixture, and Indonesian HMA mixture show 87.2%, 84.1%, and 67.9%, respectively. The wheel tracking test results indicate that the PWMA mixture is found to be more resistant to plastic deformation than the Indonesian PMA. The dynamic stability values are 2,739 times/mm and 3,150 times/mm, respectively. Moreover, the Hamburg wheel tracking test results indicate that PWMA mixture is more resistant to plastic deformation than Indonesian PMA and HMA mixtures. CONCLUSIONS :Based on limited laboratory test results, it is concluded that rutting resistance and moisture susceptibility of the PWMA mixture is superior to Indonesian HMA and Indonesian PMA mixtures. It is postulated that PWMA mixture would be suitable for climate and traffic conditions in Indonesia.

The Effect of Fluid-Structure Interaction on the Dynamic Response of Reactor Internals (유체-구조물 상호작용이 원자로내부구조물의 동적응답에 미치는 영향)

  • 정명조;박찬국;황원걸
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.73-82
    • /
    • 1993
  • Investigated in this paper is the effect of fluid-structure interaction between reactor internal components due to their immersion in a confining fluid on the dynamic responses. A non-linear mathematical model is developed for the dynamic analysis of the reactor internals, which includes lumped masses, stiffnesses and hydrodynamic couplings. The hydrodynamic mass matrix which characterizes the fluid-structure interaction is calculated. Also, the equations of motion containing hydrodynamic mass matrix are presented. The responses of the reactor internals due to seismic and pipe break excitations are obtained for the case of with- and without-hydrodynamic couplings and the different response characteristics are investigated.

  • PDF

Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium

  • Oliveira, Elizabeth E.M.;Barbosa, Celina C.R.;Afonso, Julio C.
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.231-242
    • /
    • 2012
  • The performance of a nanofiltration membrane for treatment of a low-level radioactive liquid waste was investigated through static and dynamic tests. The liquid waste ("carbonated water") was obtained during conversion of $UF_6$ to $UO_2$. In the static tests membrane samples were immersed in the waste for 24, 48 or 72 h. The transport properties of the samples (hydraulic permeability, permeate flow, selectivity) were evaluated before and after immersion in the waste. In the dynamic tests the waste was permeated in a permeation flow front system under 0.5 MPa, to determine the selectivity of NF membranes to uranium. The surface layer of the membrane was characterized by zeta potential, field emission microscopy, atomic force spectroscopy and infrared spectroscopy. The static test showed that the pore size distribution of the selective layer was altered, but the membrane surface charge was not significantly changed. 99% of uranium was rejected after the dynamic tests.

A Non-linear Model for Dynamic Analysis of Reactor Internals (원자로내부구조물의 동적해석을 위한 비선형모델)

  • Myung-J.Jhun;Sang-G.Chang;Song, Heuy-G.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.165-172
    • /
    • 1993
  • A non-linear mathematical model has been developed for the dynamic analysis of the reactor internals. The model includes a lumped mass and stiffness with non-linear members such as gap-spring. As hydrodynamic couplings have also been considered in the model, the effect of fluid/structure interaction between internals components due to their immersion in a confining fluid can be studied for the dynamic response analysis. The reactor internals responses for seismic and pipe break excitations have been calculated for the case of with-and without-hydrodynamic couplings.

  • PDF