• 제목/요약/키워드: Dynamic fracture

검색결과 521건 처리시간 0.028초

상태 기반 페리다이나믹 모델에 의한 동적취성파괴 해석: 평면응력 탄성체의 응력 전파와 균열패턴 분석 (Dynamic Fracture Analysis with State-based Peridynamic Model: Crack Patterns on Stress Waves for Plane Stress Elastic Solid)

  • 하윤도
    • 한국전산구조공학회논문집
    • /
    • 제28권3호
    • /
    • pp.309-316
    • /
    • 2015
  • 상태 기반 페리다이나믹 모델은 일반적인 재료 구성 모델을 구현할 수 있고 비국부 영역 내에서 연결된 모든 결합의 변형을 통해 각 절점의 재료 응답이 결정되기 때문에 체적 및 전단 변형을 모두 표현할 수 있다. 따라서 상태 기반 모델은 복잡한 동적 취성 파괴 현상(분기균열, 2차 균열, 계단균열, 균열 유착 등)을 해석하는데 유용하다. 본 논문에서는 평면응력 탄성체에 대해 2차원 상태 기반 페리다이나믹 모델을 적용하고 에너지해방율과 페리다이나믹 에너지 포텐셜로부터 손상 모델을 구성하였다. 페리다이나믹 파괴 해석 모델을 통해 취성 유리 재료에 대해 균열 면에 평행한 압축 응력파가 균열 분기 패턴에 미치는 영향에 대해 조사하였다. 실험을 통해 관찰된 동적 균열 진전 및 분기 패턴에 대한 주요 특성들이 페리다이나믹 해석을 통해 확인되었다. 또한 강한 인장 하중 하의 계단균열과 이차균열 등이 상태 기반 페리다이나믹 시뮬레이션을 통해 잘 모사가 되는 것을 확인할 수 있었다.

충격하중을 받은 인공취성재료의 손상평가에 관한 연구 (A Study on the Damage Assesment of Artificial Brittle Materials subjected to Impact Leading)

  • 조상호;조슬기;천대성;신중호;양형식;김승곤
    • 터널과지하공간
    • /
    • 제18권6호
    • /
    • pp.457-464
    • /
    • 2008
  • 암반 굴착기술의 고속화 및 정밀한 암반손상평가를 위해서는 암석의 동적파괴 메커니즘에 관한 연구가 중요하다. 본 연구에서는 충격파형 제어 Split Hopkinson Pressure Bar (SHPB) 시스템을 이용하여 모의 암석시료에 단계별 충격하중을 가하여 취성재료의 동적파괴 특성 및 동적손상메커니즘을 분석하였다. 실험시료의 손상도 평가를 위하여 충격실험 전후에 모든 시료에 대하여 P파 및 S파 속도를 측정하였으며, 탄성파 속도 감쇠정도에 따른 손상도를 평가하였다. 모의 연암 시료와 경암 시료의 탄성파 속도 감쇠비는 충격하중이 증가함에 따라 비슷한 수준으로 증가하는 경향을 보였으나, 최종 변형률의 경우 모의 연암 시료에서 현저히 높은 값을 나타내었다.

액상가압공정으로 제조된 STS304와 Ta 섬유 강화 Zr계 비정질 복합재료의 준정적 및 동적 변형거동 (Quasi-Static and Dynamic Deformation Behavior of STS304- and Ta-fiber-reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 김용진;신상용;김진성;허훈;김기종;이성학
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.477-488
    • /
    • 2010
  • Zr-based amorphous alloy matrix composites reinforced with stainless steel (STS) and tantalum continuous fibers were fabricated without pores or defects by a liquid pressing process, and their quasi-static and dynamic deformation behaviors were investigated by using a universal testing machine and a Split Hopkinson pressure bar, respectively. The quasi-static compressive test results indicated that the fiberreinforced composites showed amaximum strength of about 1050~1300 MPa, and its strength maintained over 700 MPa until reaching astrain of 40%. Under dynamic loading, the maximum stresses of the composites were considerably higher than those under quasi-static loading because of the strain-rate hardening effect, whereas the fracture strains were considerably lower than those under quasi-static loading because of the decreased resistance to fracture. The STS-fiber-reinforced composite showed a greater compressive strength and ductility under dynamic loading than the tantalum-fiber-reinforced composite because of the excellent resistance to fracture of STS fibers.

차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (I) - 온도에 따른 동적 물성 특성 - (Dynamic Constitutive Equations of Auto-Body Steel Sheets with the Variation of Temperature (I) - Dynamic Material Characteristics with the Variation of Temperature -)

  • 이희종;송정한;박성호;허훈
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.174-181
    • /
    • 2007
  • This paper is concerned with the thermo-mechanical behavior of steel sheet for an auto-body including temperature dependent strain rate sensitivity. In order to identify the temperature-dependent strain rate sensitivity of SPRC35R, SPRC45E and TRIP60, uniaxial tensile tests are performed with the variation of the strain rates from 0.001/sec to 200/sec and the variation of environmental temperatures from $-40^{\circ}C$ to $200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained from the static tensile test and that at the intermediate strain rate is obtained from the high speed tensile test. Experimental results show that the variation of the flow stress and fracture elongation becomes sensitive to the temperature as the strain rate increases. It is observed that the dynamic strain aging occurs with TRIP60 at the temperature above $150^{\circ}C$. Results also indicate that the flow stress and tincture elongation of SPRC35R are more dependent on the changes of strain rates and temperature than those of SPRC45E and TRIP60.

Surgical Management of a Mandible Subcondylar Fracture

  • Kang, Dong Hee
    • Archives of Plastic Surgery
    • /
    • 제39권4호
    • /
    • pp.284-290
    • /
    • 2012
  • Open reduction and anatomic reduction can create better function for the temporomandibular joint, compared with closed treatment in mandible fracture surgery. Therefore, the double miniplate fixation technique via mini-retromandibular incision was used in order to make the most stable fixation when performing subcondylar fracture surgery. Those approaches provide good visualization of the subcondyle from the posterior edge of the ramus, allow the surgeon to work perpendicularly to the fracture, and enable direct fracture management. Understanding the biomechanical load in the fixation of subcondylar fractures is also necessary in order to optimize fixation methods. Therefore, we measured the biomechanical loads of four different plate fixation techniques in the experimental model regarding mandibular subcondylar fractures. It was found that the loads measured in the two-plate fixation group with one dynamic compression plate (DCP) and one adaption plate showed the highest deformation and failure loads among the four fixation groups. The loads measured in the one DCP plate fixation group showed higher deformation and failure loads than the loads measured in the two adaption plate fixation group. Therefore, we conclude that the selection of the high profile plate (DCP) is also important in order to create a stable load in the subcondylar fracture.

Fracture toughness of amorphus SiC thin films using nanoindentation and simulation

  • Mamun, M.A.;Elmustafa, A.A.
    • Advances in materials Research
    • /
    • 제9권1호
    • /
    • pp.49-62
    • /
    • 2020
  • Fracture toughness of SiC on Si thin films of thicknesses of 150, 750, and 1500 nm were measured using Agilent XP nanoindenter equipped with a Dynamic Control Module (DCM) in Load Control (LC) and Continuous Stiffness Method (CSM) protocols. The fracture toughness of the Si substrate is also measured. Nanovision images implied that indentations into the films and well deep into the Si caused cracks to initiate at the Si substrate and propagate upward to the films. The composite fracture toughness of the SiC/Si was measured and the fracture toughness of the SiC films was determined based on models that estimate film properties from substrate properties. The composite hardness and modulus of the SiC films were measured as well. For the DCM, the hardness decreases from an average of 35 GPa to an average of 13 GPa as the film thick increases from 150 nm to 1500 nm. The hardness and moduli of the films depict the hardness and modulus of Si at deep indents of 12 and 200 GPa respectively, which correlate well with literature hardness and modulus values of Si. The fracture toughness values of the films were reported as 3.2 MPa√m.

Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

  • Im, So-Min;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권1호
    • /
    • pp.22-30
    • /
    • 2017
  • PURPOSE. The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr-Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS. Glass fiber mesh- and Cr-Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS. After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION. The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.

조선 해양 구조물용 강재의 소성 및 파단 특성 I: 변형률 경화 및 변형률 속도 경화의 이론적 배경 (Plasticity and Fracture Behaviors of Marine Structural Steel, Part I: Theoretical Backgrounds of Strain Hardening and Rate Hardening)

  • 정준모;심천식;김경수
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.134-144
    • /
    • 2011
  • In this paper, the global study trends for material behaviors are investigated regarding the static and dynamic hardenings and final fractures of marine structural steels. In particular, after reviewing all of the papers published at the 4th and 5th ICCGS (International Conference on Collision and Grounding of Ship), the used hardening and fracture properties are summarized, explicitly presenting the material properties. Although some studies have attempted to employ new plasticity and fracture models, it is obvious that most still employed an ideal hardening rule such as perfect plastic or linear hardening and a simple shear fracture criterion with an assumed value of failure strain. HSE (2001) presented pioneering study results regarding the temperature dependency of material strain hardening at various levels of temperature, but did not show strain rate hardening at intermediate or high strain rate ranges. Nemat-Nasser and Guo (2003) carried out fully coupled tests for DH-36 steel: strain hardening, strain rate hardening, and temperature hardening and softening at multiple steps of strain rates and temperatures. The main goal of this paper is to provide the theoretical background for strain and strain rate hardening. In addition, it presents the procedure and methodology needed to derive the material constants for the static hardening constitutive equations of Ludwik, Hollomon, Swift, and Ramberg-Osgood and for the dynamic hardening constitutive equations of power from Cowper-Symonds and Johnson-Cook.

Comparison of Absorbable Mesh Plate versus Titanium-Dynamic Mesh Plate in Reconstruction of Blow-Out Fracture: An Analysis of Long-Term Outcomes

  • Baek, Woon Il;Kim, Han Koo;Kim, Woo Seob;Bae, Tae Hui
    • Archives of Plastic Surgery
    • /
    • 제41권4호
    • /
    • pp.355-361
    • /
    • 2014
  • Background A blow-out fracture is one of the most common facial injuries in midface trauma. Orbital wall reconstruction is extremely important because it can cause various functional and aesthetic sequelae. Although many materials are available, there are no uniformly accepted guidelines regarding material selection for orbital wall reconstruction. Methods From January 2007 to August 2012, a total of 78 patients with blow-out fractures were analyzed. 36 patients received absorbable mesh plates, and 42 patients received titanium-dynamic mesh plates. Both groups were retrospectively evaluated for therapeutic efficacy and safety according to the incidence of three different complications: enophthalmos, extraocular movement impairment, and diplopia. Results For all groups (inferior wall fracture group, medial wall fractrue group, and combined inferomedial wall fracture group), there were improvements in the incidence of each complication regardless of implant types. Moreover, a significant improvement of enophthalmos occurred for both types of implants in group 1 (inferior wall fracture group). However, we found no statistically significant differences of efficacy or complication rate in every groups between both implant types. Conclusions Both types of implants showed good results without significant differences in long-term follow up, even though we expected the higher recurrent enophthalmos rate in patients with absorbable plate. In conclusion, both types seem to be equally effective and safe for orbital wall reconstruction. In particular, both implant types significantly improve the incidence of enophthalmos in cases of inferior orbital wall fractures.