• 제목/요약/키워드: Dynamic fatigue test

검색결과 220건 처리시간 0.033초

ENVIRONMENTAL FATIGUE OF METALLIC MATERIALS IN NUCLEAR POWER PLANTS - A REVIEW OF KOREAN TEST PROGRAMS

  • Jang, Changheui;Jang, Hun;Hong, Jong-Dae;Cho, Hyunchul;Kim, Tae Soon;Lee, Jae-Gon
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.929-940
    • /
    • 2013
  • Environmental fatigue of the metallic components in light water reactors has been the subject of extensive research and regulatory interest in Korea and abroad. Especially, it was one of the key domestic issues for the license renewal of operating reactors and licensing of advanced reactors during the early 2000s. To deal with the environmental fatigue issue domestically, a systematic test program has been initiated and is still underway. The materials tested were SA508 Gr.1a low alloy steels, 316LN stainless steels, cast stainless steels, and an Alloy 690 and 52M weld. Through tests and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for those alloys. In addition, the effects of temperature, dissolved oxygen level, and dissolved hydrogen level on low cycle fatigue behaviors have been investigated. In this paper, the test results and key analysis results are briefly summarized. Finally, an on-going test program for hot-bending of 347 stainless steel is introduced.

비틀림 하중을 받는 고주파열처리 드라이브 차축의 피로수명 평가 (Fatigue Life Estimation of Induction-Hardened Drive Shaft Under Twisting Loads)

  • 김태영;김태안;한승호
    • 대한기계학회논문집A
    • /
    • 제41권6호
    • /
    • pp.567-573
    • /
    • 2017
  • 자동차 부품 중 드라이브 샤프트는 엔진에서 발생하는 토크를 바퀴에 전달하는 동력 전달장치의 핵심 부품이다. 엔진에서 입력되는 비틀림 하중과 주행 중 발생하는 실동하중에 의한 부품의 파손을 방지하기 위해, 고주파 열처리로 강도 및 피로수명이 개선되고 있다. 본 연구에서는 고주파 열처리에 따른 드라이브 샤프트의 피로수명을 정량적으로 평가할 수 있는 피로수명 평가기법을 구축하였다. 드라이브 샤프트의 소재인 SAE10B38M2 강재로 모재 및 경화깊이가 서로 다른 고주파 열처리 시편 두 종을 제작하여 비틀림 하중 하에서의 전단 변형률 제어 피로시험을 진행하였고, 변형률-수명 피로수명 평가에 필요한 피로 물성값을 구하였다. 얻어진 피로 물성값을 이용하여 드라이브 샤프트의 변형률 기반 피로해석을 진행하였으며, 얻어진 피로수명 결과를 시제품 피로시험 결과와 비교하여 해석기법의 타당성을 검증하였다.

OPTIMAL SHAPE DESIGN OF THE FRONT WHEEL LOWER CONTROL ARM CONSIDERING DYNAMIC EFFECTS

  • Kang, B.J.;Sin, H.C.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.309-317
    • /
    • 2007
  • In this study, we conducted a vibration fatigue analysis of the lower control arm in a vehicle suspension system. The vehicle was driven during the tests so that the dynamic effects could be taken into account. The dynamic load of the frequency domain was superimposed on the frequency response analysis. We performed a virtual proving ground test using multi-body dynamics, along with a finite element analysis and fatigue life predictions. Shape optimization was also considered using the design of the experimental approach, and a response surface analysis was performed to improve the durability performance of the lower control arm. We identified the elements that had the most influence on the optimal shape of the finite element model and analyzed the sensitivity of those elements. Then the optimal points that minimized the amount of damage to the areas of interest were determined through a response surface analysis. The results suggested that the fatigue life of the model increased as its mass was not increased excessively, and demonstrated that these design procedures yielded an appropriate optimized lower control arm model.

KTX-산천 열차용 모터 감속기 고정대의 피로 수명 평가 (Fatigue Life Evaluation of Motor Block Bracket Units for KTX-Sancheon Trains)

  • 이찬우;이동형
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.626-631
    • /
    • 2012
  • In this study, fatigue life of the motor block bracket units for KTX-Sancheon trains was assessed. Design evaluation for railway structures was performed based on the UIC 566 regulation, and test and evaluation of fatigue life in welded parts was performed in accordance with standard ERRI B 12/RP17 and ERRI B 12/RP60. The actual vehicle dynamic stress testing was executed in KTX-Sancheon service line with the service operating speed. The dynamic stress was measured with commercial data acquisition system (MGC plus). The cumulative damage was evaluated by applying standard BS 7608 - Class F and cycle counting was used rain-flow counting method. As a result, the motor block bracket units for KTX-Sancheon trains was designed to fit the regulation and the safety of fatigue life for 30 years, assuming that KTX-Sancheon trains travels 600,000km annually, were confirmed under current operating conditions.

자동차용 엔진 마운트의 피로거동에 관한 연구 (Fatigue Characteristics of Engine Rubber Mount for Automotive)

  • 서창민;오상엽;박대규;장주호
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.45-53
    • /
    • 2009
  • In this study, Finite Element Analysis (FEA) was used to decide three kinds of material property of vibration proof rubber with the unique characteristic of non-linear and large deformation. As well, three types of hardness (Hs 50, 55, 60) were compared with the result of fatigue tests, fatigue life was able to be predicted. The request for fatigue life becomes strict more and more as increasing stress under conditions like a compaction, high load and high temperature for parts because it is main characteristics of rubber mount for automotive. Regarding to the fatigue life under dynamic deformation condition, it can be predicted as checking forced deformation extends and its frequency and its strain-life curve. As for material property tests of uniaxial tension test, uniaxial compression test, pure shear test, Ogden model was used for FEA by observing relations between stress and strain's rate as curve fitting. As a result of FEA, fatigue life for rubber mount was predicted and accorded well with the experimental data of fatigue test with hourglass specimens. In addition, its property of the predictable fatigue life method suggested in this study was accorded well with the experimental data by comparing the predicted fatigue life of FEA with the result of fatigue test for rubber component of engine rubber mount.

304 스테인리스강의 300℃에서 저주기 피로수명 증가 (Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel)

  • 김대환;한창희;이봉상
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.391-396
    • /
    • 2009
  • Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.

강섬유콘크리트구조물의 다양한 동적거동에 관한 실험적 연구 (Experimental Investigation on Dynamic Behavior of Steel Fiber Reinforced Concrete Structures)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제13권4호
    • /
    • pp.431-439
    • /
    • 2010
  • 강섬유콘크리트는 터널의 숏크리트와 산업슬래브포장과 같은 적용 분야에서는 벌써 주목할 정도로 성공적인 반면에 일반적인 건설실무에서는 적용가능성이 주로 경제적인 이유로 해서 지금 까지는 부분적으로 제한되었다. 동적하중을 받는 특수한 분야 예를 들면 충격하중, 지진하중 및 철도의 피로하중등과 같은 동적하중이 작용하는 구조물에 대해서는 흥미로운 가능성을 열어 놓고 있다. 따라서 연구에서는 저자 연구소에서 수행한 다양한 동하중을 받는 구조물에 강섬유콘크리트를 적용할 수 있도록 강섬유콘크리트의 에너지 감쇠, 충격특성 및 피로거동 등을 실험적으로 수행한 연구결과로 보여준다.

수종 임플랜트 지대주나사의 반복하중 후 나사풀림에 관한 연구 (A STUDY OF SCREW LOOSENING AFTER DYNAMIC CONTINOUS FATIGUE TEST OF SEVERAL ABUTMENT SCREW)

  • 김진만;한중석;이선형;양재호;이재봉;김영수
    • 대한치과보철학회지
    • /
    • 제41권4호
    • /
    • pp.519-531
    • /
    • 2003
  • Statement of problem : Chronic implant screw loosening remains a problem in restorative practices. Some implant manufactureres have introduced abutment screws with treated material, surfaces and macrostructures in an effort to reduce potential loosening. Purpose : This study evaluated the materials and loading cycles on detorque value after dynamic continous fatigue test in the sinulated conditions of posterior single restoration. Material and method : Fourteen of each of the following abutment screws - titanium alloy, gold alloy, gold-tite, and titanium alloy modified - were used in test. SEM is used to verify macrostructures of each screws. $ZrO_2/Al_2O_3$ composite abutment was tightened on $4{\times}10.0mm$ titanium external implant at 30 Ncm. Cyclic loading machine delivered dynamic loading forces between 20 and 320N for 100,000, 200,000, 300,000, 500,000, and 1,000,000 cycles at frequencies 14Hz. Torque and detorque value after loading was measured. Results : All measued screws had different screw length and thread form. Titanium modified screw had greater detorque value than others before and after cyclic loadings(p<0.05). All abutment screws had no significant change in mean percentage of detorque value after loading to initial value after less than 500.000 cyclic loadings, but significant lower value after 1,000,000 cycles(p<0.05). Conclusion : Within limintations of this study all abutment screws may be loosend after about 1 year use. Annual check-up is nessasary to prevent screw loosening.

박판 궤도륜 볼베어링의 특성해석 및 피로수명 평가 (Analysis and Fatigue Life Evaluation of the Ball Bearing with Thin-Section Raceways)

  • 김완두
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.48-55
    • /
    • 1997
  • The ball bearing with thin-section raceways which is much lighter than other conventional bearings used in most modem passenger cars and small tracks. The important design parameters of this bearing is the groove radius of raceways, the diametral clearance, the free contact angle and so on. The optimal value of these parameters were determined by considering the dynamic load capacity, the contact angle and the calculated fatigue life. The contact angle between a ball and raceways was calculated by considering the local contact deformation and the structural deformation of thin-section raceways which was estimated by FEM. The raceways were made by means of the press-forming process. The fatigue life tester was designed and manufactured. The fatigue life test was executed and the reliability of this bearing was confirmed.

Al-3%Ti 박막의 피로성질에 대한 시편 크기 영향 (Specimen Size Effect on Fatigue Properties of Surface-Micromachined Al-3%Ti Thin Films)

  • 박준협;명만식;김윤재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1708-1711
    • /
    • 2007
  • This paper presents high cycle fatigue properties of an Al-3%Ti thin film, used in a RF (radio-frequency) MEMS switch for a mobile phone and also describes new test method for obtaining static and dynamic characteristics of thin film and reliability evaluation method on MEMS device with thin film developed by authors. Durability should be ensured for such devices under cycling load. Therefore, with the proposed specimen and test procedure, tensile and fatigue tests were performed to obtain mechanical and fatigue properties. The specimen was made with dimensions of $1000{\mu}m$ long, $1.0{\mu}m$ thickness, and 3 kinds of width, 50, 100 and $150{\mu}m$. High cycle fatigue tests for each width were also performed, from which the fatigue strength coefficient and the fatigue strength exponent were found to be 193MPa and .0.02319 for $50{\mu}m$, 181MPa and -0.02001 for $100{\mu}m$, and 164MPa and -0.01322 for $150{\mu}m$, respectively. We found that the narrower specimen is, the longer fatigue life of Al-3%Ti is and the wider specimen is, the more susceptible to stress level fatigue life of Al-3%Ti was.

  • PDF