• Title/Summary/Keyword: Dynamic equilibrium

Search Result 571, Processing Time 0.025 seconds

Molecular-dynamic simulation on the equilibrium and dynamical properties of fluids in a nano-channel

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.208-214
    • /
    • 2008
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids (the Lennard-Jones fluid, water and aqueous sodium-chloride solution) confined between two plates that are separated by 1.086 nm; included in the equilibrium properties are the density distribution and the static structure, and the diffusivity in the dynamic property. Three kinds of fluids considered in this study are. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

  • PDF

Molecular-dynamic simulation on the equilibrium and dynamical properties of fluids in a nano-channel

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.208-214
    • /
    • 2008
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids (the Lennard-Jones fluid, water and aqueous sodium-chloride solution) confined between two plates that are separated by 1.086 nm; included in the equilibrium properties are the density distribution and the static structure, and the diffusivity in the dynamic property. Three kinds of fluids considered in this study are. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

  • PDF

Dynamic Stability and Semi-Analytical Taylor Solution of Arch With Symmetric Mode (대칭 모드 아치의 준-해석적 테일러 해와 동적 안정성)

  • Pokhrel, Bijaya P.;Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.83-91
    • /
    • 2018
  • In this study, we investigated the dynamic stability of the system and the semi-analytical solution of the shallow arch. The governing equation for the primary symmetric mode of the arch under external load was derived and expressed simply by using parameters. The semi-analytical solution of the equation was obtained using the Taylor series and the stability of the system for the constant load was analyzed. As a result, we can classify equilibrium points by root of equilibrium equation, and classified stable, asymptotical stable and unstable resigns of equilibrium path. We observed stable points and attractors that appeared differently depending on the shape parameter h, and we can see the points where dynamic buckling occurs. Dynamic buckling of arches with initial condition did not occur in low shape parameter, and sensitive range of critical boundary was observed in low damping constants.

Effect of 8-week Small Tool Exercise according to Age on Knee Strength and Balance in Women

  • Jang, Ri Ra;Jeong, hwan Jong;Kim, Ki Hong
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.197-205
    • /
    • 2022
  • In order to investigate the effect of an 8-week elastic band exercise program according to age on the isokinetic strength and dynamic equilibrium of the knee, 10 women under 49 years old and 10 women over 50 years old were selected. Dynamic equilibrium was measured through Y-Balance test one week before the exercise program, and power and endurance were confirmed by measuring isokinetic muscle strength of the knee. After measurement, small tool exercise was performed for 8 weeks. After 8 weeks of exercise, isokinetic muscle strength and dynamic equilibrium were measured. As a result, isokinetic muscle strength, which checks muscle strength and muscular endurance, increased after measurement than before measurement regardless of age, and dynamic equilibrium increased after measurement rather than before measurement, and the group under 49 years of age was higher than the group over 50 years old. We think that small tool exercise improves isokinetic muscle strength and is effective in neuromuscular development, improving dynamic stability ability, which is an important factor in preventing falls.

The Effect of Classes Using the Scratch for Quasi-Microscopic Representation Approaches in Dynamic Equilibrium Learning (동적 평형 학습에서 준미시적 표상 접근을 위한 스크래치 활용 수업의 효과)

  • Seongjae Lee;Sungki Kim;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.241-252
    • /
    • 2023
  • This study aims to increase students' understanding of equilibrium, one of the many concepts in chemistry that students find difficult. Dynamic equilibrium must be dealt with at the sub-microscopic level where the real and the representation overlap in order to microscopically understand the constant motion and interaction of particles and to understand the macroscopic characteristics expressed through this. However, as a result of analyzing 9 Chemistry I textbooks, the expression approach for equilibrium had some limitations. As a strategy to understand equilibrium at a sub-microscopic approach, the classes using scratch were consisted of a total of 4 hours, and it was implemented with 56 students. The classes were composed of 6 steps, and it was designed to understand equilibrium step by step. As a result of comparing the pretest and post- test, the number of students who got both the microscopic and macroscopic explanations of chemical equilibrium correct increased largely. Through this, it was possible to get a glimpse of the applicability of classes using scratch as the approach strategy of the sub-microscopic representation.

Automatic Ball Balancer for Vibration Reduction of Rotating Machines (회전기계의 진동저감을 위한 자동볼평형장치)

  • Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.59-68
    • /
    • 2005
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After non-dimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

Principles in Theo Van Doesburg's architectural concept -The relation between space and color- (Theo Van Doesburg의 건축 구상 원리 -공간과 색채와의 관계-)

  • Shin, Moon-Ki
    • Journal of architectural history
    • /
    • v.6 no.3 s.13
    • /
    • pp.155-166
    • /
    • 1997
  • This study aimes to understand the principles in Theo Van Doesburg's architectural concept. Generally, Theo Van Doesburg has been thought that he betrayed De Stijl by acting contrary to the Neo-Plasticism which was constituted in early De Stijl by Mondrian and himself and by suggesting opposite one, Elementarism. Therefore this study tried to understand the principles that make his architectural concept, confirming the background of Elementarism. After studing relation, which Theo Van Doesburg has used, between space and color, it is concluded that he has unchanged principles of architectural concept from early De Stijl to last, opposite to general appreciation. So, Theo Van Doesburg acted to maintain equilibrium that exists for balancing the two elemental forces which contrast each other in relation between space and color. The equilibrium which he looked for aims to constitute harmonized dynamic space by dynamic rythem of equilibrium instead of Neo-Plastic effect. And using color, which used to be producing dynamic effect, he intended to maintain static effect for making dynamic rythem of equllibrium by the principles he made.

  • PDF

Vibration Analysis of an Automatic Ball Balancer (자동 볼 평형장치의 진동 해석)

  • 박준민;노대성;정진태
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.363-370
    • /
    • 1999
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After nondimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

The Ramp-Rate Constraint Effects on the Generators' Equilibrium Strategy in Electricity Markets

  • Joung, Man-Ho;Kim, Jin-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.509-513
    • /
    • 2008
  • In this paper, we investigate how generators' ramp-rate constraints may influence their equilibrium strategy formulation. In the market model proposed in this study, the generators' ramp-rate constraints are explicitly represented. In order to fully characterize the inter-temporal nature of the ramp-rate constraints, a dynamic game model is presented. The subgame perfect Nash equilibrium is adopted as the solution of the game and the backward induction procedure for the solution of the game is designed in this paper. The inter-temporal nature of the ramp-rate constraints results in the Markov property of the game, and we have found that the Markov property of the game significantly simplifies the subgame perfect Nash equilibrium characterization. Finally, a simple electricity market numerical illustration is presented for the successful application of the approach proposed.

Finite element formulations for free field one-dimensional shear wave propagation

  • Sun-Hoon Kim;Kwang-Jin Kim
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.163-174
    • /
    • 2024
  • Dynamic equilibrium equations for finite element analysis were derived for the free field one-dimensional shear wave propagation through the horizontally layered soil deposits with the elastic half-space. We expressed Rayleigh's viscous damping consisting of mass and stiffness proportional terms. We considered two cases where damping matrices are defined in the total and relative displacement fields. Two forms of equilibrium equations are presented; one in terms of total motions and the other in terms of relative motions. To evaluate the performance of new equilibrium equations, we conducted two sets of site response analyses and directly compared them with the exact closed-form frequency domain solution. Results show that the base shear force as earthquake load represents the simpler form of equilibrium equation to be used for the finite element method. Conventional finite element procedure using base acceleration as earthquake load predicts exact solution reasonably well even in soil deposits with unrealistically high damping.