• Title/Summary/Keyword: Dynamic encryption

Search Result 74, Processing Time 0.025 seconds

Demonstration of 10 Gbps, All-optical Encryption and Decryption System Utilizing SOA XOR Logic Gates (반도체 광 증폭기 XOR 논리게이트를 이용한 10 Gbps 전광 암호화 시스템의 구현)

  • Jung, Young-Jin;Park, Nam-Kyoo;Jhon, Young-Min;Woo, Deok-Ha;Lee, Seok;Gil, Sang-Keun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.237-241
    • /
    • 2008
  • An all-optical encryption system built on the basis of electrical logic circuit design principles is proposed, using semiconductor optical amplifier (SOA) exclusive or (XOR) logic gates. Numerical techniques (steady-state and dynamic) were employed in a sequential manner to optimize the system parameters, speeding up the overall design process. The results from both numerical and experimental testbeds show that the encoding/decoding of the optical signal can be achieved at a 10 Gbps data rate with a conventional SOA cascade without serious degradation in the data quality.

Dynamic Allocation Algorithm for enhancement of transmission performance on a radio encryption system (무선암호시스템에서 전송성능 개선을 위한 동적할당 알고리듬)

  • 홍진근;윤장홍;장병화;황찬식
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • In this paper, a synchronized stream encryption system for secure link layer communication in a radio channel is designed. Interleaving scheme which is used to enhance the transmission performance over a fading channel is applied to the encrypted information. A designed synchronous scream cipher system consists of a keystream generator, a synchronization pattern generator and a session key generator. The structure of a synchronous stream cipher system with periodic synchronization is composed of the encrypted information which consists of a synchronization pattern, an error correcting coded session key, an encrypted data in a period of synchronization. In this paper, interleaving scheme using dynamic allocation a1gorithm(DAA) is applied the encrypted information. The BER of the DAA has been slightly higher than that of the SAA(static allocation algorithm).

Identity-Based Secure Many-to-Many Multicast in Wireless Mesh Networks (무선 메쉬 네트워크에서의 아이디 기반 프록시 암호화를 이용한 안전한 다대다 멀티캐스트 기법)

  • Hur, Jun-Beom;Yoon, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.72-83
    • /
    • 2010
  • Group communication in a wireless mesh network is complicated due to dynamic intermediate mesh points, access control for communications between different administrative domains, and the absence of a centralized network controller. Especially, many-to-many multicasting in a dynamic mesh network can be modeled by a decentralized framework where several subgroup managers control their members independently and coordinate the inter-subgroup communication. In this study, we propose a topology-matching decentralized group key management scheme that allows service providers to update and deliver their group keys to valid members even if the members are located in other network domains. The group keys of multicast services are delivered in a distributed manner using the identity-based encryption scheme. Identity-based encryption facilitates the dynamic changes of the intermediate relaying nodes as well as the group members efficiently. The analysis result indicates that the proposed scheme has the advantages of low rekeying cost and storage overhead for a member and a data relaying node in many-to-many multicast environment. The proposed scheme is best suited to the settings of a large-scale dynamic mesh network where there is no central network controller and lots of service providers control the access to their group communications independently.

Efficient Image Chaotic Encryption Algorithm with No Propagation Error

  • Awad, Abir;Awad, Dounia
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.774-783
    • /
    • 2010
  • Many chaos-based encryption methods have been presented and discussed in the last two decades, but very few of them are suitable to secure transmission on noisy channels or respect the standard of the National Institute of Standards and Technology (NIST). This paper tackles the problem and presents a novel chaos-based cryptosystem for secure transmitted images. The proposed cryptosystem overcomes the drawbacks of existing chaotic algorithms such as the Socek, Xiang, Yang, and Wong methods. It takes advantage of the increasingly complex behavior of perturbed chaotic signals. The perturbing orbit technique improves the dynamic statistical properties of generated chaotic sequences, permits the proposed algorithm reaching higher performance, and avoids the problem of error propagation. Finally, many standard tools, such as NIST tests, are used to quantify the security level of the proposed cryptosystem, and experimental results prove that the suggested cryptosystem has a high security level, lower correlation coefficients, and improved entropy.

DIAMETER Strong Security Extension using Kerberos v5 in WLAN (WLAN에서 Kerberos v5를 이용하여 안전성을 강화한 DIAMETER의 확장)

  • Wiroon, Sriborrirux;Kim, Tai-Yun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.1023-1026
    • /
    • 2002
  • The demand for Wireless LAN (WLAN) access to use their network and the Internet is surged dramatically over the past year. Since WLAN provides users' access from anywhere in the workplace without having to plug in, it therefore leads the WLAN market to grow steadily. Unfortunately, the first WLAN implementation designed primarily for home networking did little to address these security issues. Moreover, although the 802.11b standard published by IEEE in 1999 improved WLAN connections LAN-equivalent speed and security from the 802.11 standard. However, there still are several flaws such as the weaknesses in the Authentication and WEP encryption schemes in the IEEE 802.11 WLAN standard. In this paper, we propose WLAN architecture for providing the strong centralized authentication, encryption, and dynamic key distribution on a WLAN. Additionally, this proposed architecture is able to support roaming users and is flexible and extensible to future developments in the network security.

  • PDF

Development of Standard Hill Technology for Image Encryption over a 256-element Body

  • JarJar, Abdellatif
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • This document traces the new technologies development based on a deep classical Hill method improvement. Based on the chaos, this improvement begins with the 256 element body construction, which is to replace the classic ring used by all encryption systems. In order to facilitate the application of algebraic operators on the pixels, two substitution tables will be created, the first represents the discrete logarithm, while the second represents the discrete exponential. At the same time, a large invertible matrix whose structure will be explained in detail will be the subject of the advanced classical Hill technique improvement. To eliminate any linearity, this matrix will be accompanied by dynamic vectors to install an affine transformation. The simulation of a large number of images of different sizes and formats checked by our algorithm ensures the robustness of our method.

A Secure Protocol for High-Performance RFID Tag (고기능 RFID 태그를 위한 보안 프로토콜)

  • Park, Jin-Sung;Choi, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.217-223
    • /
    • 2005
  • In this paper, we have proposed a secure dynamic ID allocation protocol using mutual authentication on the RFID tag. Currently, there are many security protocols focused on the low-price RFID tag. The conventional low-price tags have limitation of computing power and rewritability of memory. The proposed secure dynamic ID allocation protocol targets to the high-performance RFID tags which have more powerful performance than conventional low-price tag by allocating a dynamic ID to RFID using mutual authentication based on symmetric encryption algorithm. This protocol can be used as a partial solution for ID tracing and forgery.

A Secure Protocol for High-Performance RFID Tag using Dynamic ID Allocating (동적 ID 할당을 이용한 고기능 RFID 태그용 보안 프로토콜)

  • Park Jin-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.642-648
    • /
    • 2006
  • In this paper, I have proposed a secure dynamic ID allocation protocol using mutual authentication on the RFID tag. Currently, there are many security protocols focused on the low-price RFID tag. The conventional low-price tags have limitation of computing power and rewritability of memory. The proposed secure dynamic ID allocation protocol targets to the high-performance RFID tags which have more powerful performance than conventional low-price tag by allocating a dynamic ID to RFID using mutual authentication based on symmetric encryption algorithm. This protocol can be used as a partial solution for ID tracing and forgery.

  • PDF

Design of the Security Cryptography File System Based on the Dynamic Linking Module on the Linux O.S (Linux 운영체제 동적 모듈 개념을 이용한 보안 파일 시스템 모듈 설계)

  • Jang, Seung-Ju;Lee, Jeong-Bae
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.929-936
    • /
    • 2003
  • We Propose the Suity Cryptography File System to encrypt or decrypt a plaintext or an encrypted tort by using the dynamic linking mechanism In the Linux kernel. The dynamic linking mechanism gives the flexibility of the kernel without changing the kernel. The Sorority Cryptography File System uses the blowfish algorithm to encrypt or decrypt a data. To overcome the overhead of the key server, I use key generating algorithm which is installed in the same Security Cryptography File System. The Security Cryptography file System is fitted into the Linux system.

A Dynamic ID Allocation Protocol for High-Performance RFID Tag (고기능 RFID 태그를 위한 동적 ID 할당 프로토콜)

  • Park Jin-Sung;Choi Myung-Ryul
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.49-58
    • /
    • 2005
  • In this paper, we have proposed a secure dynamic ID allocation protocol using mutual authentication on the RFID tag. Currently, there are many security protocols focused on the low-price RFID tag. The conventional low-price tags have limitation of computing power and rewritability of memory. The proposed secure dynamic ID allocation protocol targets to the high-performance RFID tags which have more powerful performance than conventional low-price tag by allocating dynamic ID to RFID using mutual authentication based on symmetric encryption algorithm. This protocol can be used as a partial solution for ID tracing and forgery.