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Many chaos-based encryption methods have been 
presented and discussed in the last two decades, but very 
few of them are suitable to secure transmission on noisy 
channels or respect the standard of the National Institute 
of Standards and Technology (NIST). This paper tackles 
the problem and presents a novel chaos-based 
cryptosystem for secure transmitted images. The proposed 
cryptosystem overcomes the drawbacks of existing chaotic 
algorithms such as the Socek, Xiang, Yang, and Wong 
methods. It takes advantage of the increasingly complex 
behavior of perturbed chaotic signals. The perturbing 
orbit technique improves the dynamic statistical 
properties of generated chaotic sequences, permits the 
proposed algorithm reaching higher performance, and 
avoids the problem of error propagation. Finally, many 
standard tools, such as NIST tests, are used to quantify the 
security level of the proposed cryptosystem, and 
experimental results prove that the suggested 
cryptosystem has a high security level, lower correlation 
coefficients, and improved entropy. 
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I. Introduction 

Chaos has sensitivity to initial conditions and system 
parameters (ergodicity and mixing), which are analogous to the 
confusion and diffusion properties of a good cryptosystem. 

In recent years, a large amount of work using digital chaotic 
systems to construct cryptosystems has been done [1]-[4]. 
Basically, a number of very different approaches to the use of 
chaos can be found in the literature [5]-[9].  

In order to be used in all applications, chaotic sequences 
must seem absolutely random and have good cryptographic 
properties. Many studies on chaotic maps have been 
undertaken [10], [11]. In [12], we studied and improved some 
existing techniques used to generate chaotic signals with 
desired statistical properties and comply with National Institute 
of Standards and Technology (NIST) statistical tests. Indeed, to 
obtain better dynamical statistical properties and avoid the 
degradation caused by the digital chaotic system working in a 
2N finite state, a perturbation technique is used.  

It is well known that images are different from texts in many 
aspects, such as high redundancy and correlation. In most 
natural images, the value of any given pixel can be reasonably 
predicted from the values of its neighbors. Many researchers 
have proposed schemes with combinational permutation 
techniques [13]-[16].  

In this paper, we propose an algorithm based on two chaotic 
permutation methods: the cyclic shift bit permutation method 
and a bit permutation method. The former can be a permutation 
of bits, bytes, or a set of bytes, and the latter is applied on 8 bits 
whose positions are also controlled by chaos. 

The proposed algorithm is an enhancement of the enhanced 
1-D chaotic key-based algorithm for image encryption 
proposed by Socek [7] and the cryptosystems proposed by 
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Xiang [8], Yang [9], Lian [15], and Wong [16]. The algorithm 
proposed by Xiang has two remaining problems: the binary 
sequence used for substitution leaks the trajectory of the 
chaotic map for easy cryptanalysis, and the encryption speed is 
still slow compared to conventional cryptosystems. The 
encryption of a symbol requires 320 to 383 iterations (Table 1 
in [8]). 

To overcome the drawbacks mentioned above, a new 
scheme of a block cryptosystem with output feedback (OFB) 
was proposed [9]. 

In their algorithms, Socek and Yang propose perturbing the 
chaotic values with the encrypted data [7], [9]. The perturbation 
that they propose is not efficient because each encrypted block 
depends on all the previous encrypted ones. If an error occurs 
in the encrypted image transmitted on a noisy channel, we will 
obtain random errors in the decrypted image. Consequently, it 
is better to use an external perturbation which is independent of 
the encrypted data, as we did in our algorithm. 

The same conclusion can be applied to the Lian [15] and 
Wong [16] algorithms. In these methods, the pixel value 
mixing depends on the value of the previously processed pixel. 
The diffusion effect is injected by adding the current pixel 
value with the previous permuted pixel. This diffusion method 
is also not efficient because it helps the error propagation 
phenomenon. Thus, if a transmission error occurs in the 
encrypted image, we obtain random errors in the decrypted 
image.  

The paper is organized as follows. Section II briefly 
introduces the original schemes proposed by Socek [7], Xiang 
[8], and Yang [9]. Section III describes the proposed algorithm. 
Section IV explains the decryption process. Section V 
introduces the perturbed generator used. The simulation results 
and security analysis are given in section VI. In section VII, we 
examine the problem of error propagation. The last section 
concludes this paper. 

II. Overview of Two Existing Algorithms  

1. Socek Algorithm 

The encryption algorithm in Fig. 1 transforms an image I 
using an SP-network generated by a piecewise linear chaotic 
map (PWLCM) and a 128 bit secret key. The algorithm 
performs r rounds of an SP-network on each pixel. The next 
iteration of the chaotic map is perturbed using the previous 
cipher block. 

The permutation is made on the 8 bits of each block made up 
of 4 bytes. In other words, we use a permutation of degree 8 to 
add diffusion to the system. Actually, the fastest way to achieve 
this is by using a table lookup approach. 
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Fig. 1. Socek encryption algorithm. 
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This approach is fast, but the memory requirements are 
considerably high. A number of permutation methods have 
been proposed [7], [17]-[19]. 

Among these, the Socek method [7] is the most attractive. It 
is fast and has good cryptographic properties.  

2. Xiang and Yang Algorithm  

The proposed scheme is described below, and an illustration 
is given in Fig. 2.  

The steps of the Xiang encryption algorithm are as follows:  

Step 1. The logistic map is iterated 70 times.                         
Step 2. The binary sequences Aj supplied by all the third bits 

of the chaotic values must be obtained. 
Step 3. An integer Dj is computed as the decimal value of a 

part of the chaotic value bits. 
Step 4. The key dependent permutation method [8], [9] is 

used. This method permutes the block with left cyclic shift Dj 

bits as illustrated in Fig. 3. 
Step 5. A bit xor operation is used to mask the permuted data 

with the binary sequence Aj. 
Step 6. The value Dj will be used to iterate the logistic map 

successively after the current block has been encrypted. 

The key dependent permutation is controlled by the chaotic 
value. The permutation is then different for different message  
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Fig. 2. Xiang encryption algorithm. 
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Fig. 3. Xiang permutation method. 
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blocks. This permutation can take the form of pixel position 
permutation or bit permutation. 

However, this algorithm is not secure. The binary sequence 
Aj leaks the trajectory of the chaotic map for easy cryptanalysis, 
and the encryption speed is slow. The number of iterations 
required for the encryption of a symbol is both large and 
random.  

Later in his paper, Yang [9] proposed using OFB to 
overcome this problem. He generates the binary sequence Aj 
using the cipher image.  

The use of the encrypted blocks to perturb the chaotic orbits, 
proposed by Socek and Yang in their algorithms, is not efficient. 
Perturbation methods cause propagation of errors in the 
decrypted images when a bit error occurs in the transmitted 
encrypted image. Consequently, they are not suitable to 
transmission on a noisy channel. In [20], we proposed an 
improvement of Socek’s algorithm using a different manner to 
perturb the chaotic orbit. However, the encrypted images 
cannot pass all NIST tests. In the next section of this paper, we 
propose a new algorithm that is secure and better suited to 
transmission than these algorithms.  

III. Proposed Encryption Algorithm 

In this section, we present the proposed algorithm (Fig. 4) for  

 

Fig. 4. Proposed encryption algorithm. 
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image encryption that we implemented with Matlab. 

Let I be an M×N image with a byte pixel value. A block 
cipher is an encryption scheme which breaks up the plaintext 
messages into blocks of fixed length (32 bits or b=4 bytes) and 
encrypts one block at a time. A block value is denoted by Pj,  
0 ≤ j < M×N/b.    

The characteristics and steps of the proposed encryption 
algorithm are:  

Step 1. The key size is 128 bits.  
Step 2. The PWLCM currently used is replaced with a 

perturbed PWLCM to improve statistical properties.  
Step 3. In fact, the chaotic value is generated on 32 bits, and 

then this value is used to give the tree parameters Dj, muj, and 
Chj as  

mod( ,31),j jD x=                (1) 

7mod( / 2 ,25),j jmu x=             (2) 

   16mod( / 2 ,8!).j jCh x=             (3) 

The first parameter Dj is used to control Xiang permutation. 
The second parameter muj indicates the position of the 8 bits 
considered to be permuted by the Socek method. The last one, 
Chj, is used to control the Socek permutation method. 

Step 4. The permutation box adds diffusion to the system in 
two steps. First, the bits of each block are permuted with left 
cyclic shift Dj bits according to the approach illustrated in   
Fig. 5. Then these bits are permuted by the Socek method. The  
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Fig. 5. Proposed encryption algorithm with OFB operation mode.
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Fig. 6. Proposed encryption algorithm with CBC operation mode.
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last one permutes only 8 bits of the block. These bits are chosen 
by the chaotic value, and this permutation is also controlled by 
the chaotic map. 

Step 5. Another perturbed chaotic map is used to control the 

substitution box (S-box). The S-box used is the classic chaotic 
masking technique. The following manipulation (4) is applied.  

Step 6. Substitution ( , ' ) ' ,j j j jy P y P= ⊕        (4) 
where yj and P'j are two blocks of 4 bytes. 

In order to disturb the high correlation among adjacent pixels, 
we propose a scheme that includes two permutation methods. 
These methods, developed by Xiang and Socek, are chaotic. 
They are applied to a block of 4 bytes. The first permutation 
can be a bit permutation or a pixel permutation method, and the 
second one permutes 8 bits whose positions are given by the 
chaotic value mu.  

Our algorithm does not permit the propagation of errors 
which result from the consideration that the permutation of 
each block is independent of the other block of the image. 
The proposed permutation techniques decrease the 
correlation in the encrypted image and avoid some of the 
inconveniences of the existing permutation methods, such as 
the Lian [15] and Wong [16] techniques. Therefore, the 
proposed algorithm uses a perturbed chaotic map with good 
dynamic properties that we will explain in the next section. 
The used perturbation technique does not only enhance the 
characteristics of the chaotic map, as we proved in [12], but 
also helps to avoid the propagation of errors in the decrypted 
image. In fact, the results obtained by Socek [7] and Yang [9] 
are not suitable to the transmission on a corrupted channel. In 
their algorithms, they use a perturbation technique of the 
chaotic map using the encrypted data. Then, if a transmission 
error occurs in the ciphered image, random errors occur in the 
decrypted image.  

Our algorithm overcomes the drawbacks of the above 
mentioned algorithms, and some experimental results will be 
drawn in section VI to prove the robustness and security of the 
proposed algorithm. 

Figures 5 and 6 show the encryption algorithms with OFB 
and cipher block chaining (CBC) operation modes. 

IV. Decryption Process 

The decryption algorithm depends on the cipher mode used. 
For the OFB mode, CFB mode, and counter-mode encryption, 
the decryption algorithm is the same as that of the encryption. 
However, for the CBC mode, it differs slightly from the 
encryption algorithm. To decrypt an encrypted image, we need 
to perform the inverse transformations (Fig. 7).   

In the inverse Socek method, the bits are rearranged 
according to the array indices (8-p(i)) instead of p(i) used in the 
encryption process. Therefore, we need to reverse the order of 
the substitution and bit permutation methods. Then, we use the 
inverse methods to decrypt the image. 
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Fig. 7. Proposed decryption algorithm with CBC operation mode.
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V. Perturbed PWLCM 

A PWLCM is a map composed of multiple linear segments.  
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(5) 
where the positive control parameters are p є (0; 0.5) and   
x(i) є (0; 1). Since digital chaotic iterations are constrained in a 
discrete space with 2N elements, it is obvious that every chaotic 
orbit will eventually be periodic and in a cycle with a limited 
length not greater than 2N [21], [22]. Generally, each digital 
chaotic orbit includes two connected parts: 1 2,  ,  ...,  lx x x  and 

1,  ,  ...,  ,l l l nx x x+ + which are respectively called “transient 
branch” and “cycle.” Accordingly, l and n+1 are respectively 
called “transient length” and “cycle period,” and l+n is called 
“orbit length.”  

To improve the dynamic statistical properties of generated 
chaotic sequences, a perturbation-based algorithm is used. The 
cycle length is expanded, and consequently, good statistical 
properties are reached. Many perturbation techniques have 

been proposed. For example, Socek [7] and Yang [9] use a 
perturbation-based algorithm. The orbits are perturbed by the 
encrypted blocks. Their algorithms are very secure, but a bit 
transmission error causes a random number of erroneous bits in 
the decrypted image. In this paper, we use another perturbation 
technique using a maximal length linear feedback shift register 
(LFSR), which is a suitable candidate for perturbing the signal 
generator [21]. 

Here, for computing precision N, each x can be described as 

{ }1 2( ) 0. ( ) ( )... ( )... ( ) ( ) 0,1
1, 2,..., .

i N ix n x n x n x n x n x n
i N

= ∈

=
  (6) 

The perturbing bit sequence can be generated every n clock 
by 

1 0 0 1 1 1 1( ) ( ) ( ) ( ) ... ( )
0,1, 2,...,

k k k kQ n Q n g Q n g Q n g Q n
n

+
− − −= = ⊕ ⊕ ⊕

=
 

(7) 
where ⊕ represents ‘exclusive or,’ 0 1 1[ ... ]kg g g g −=  is the 
tap sequence of the primitive polynomial generator, and 

0 1 1... kQ Q Q −  are the initial register values of which at least one 
is non zero. 

The perturbation begins at n= 0 and then occurs periodically 
every ∆iterations (∆ is a positive integer) with n= l×∆, l=1, 2, 
…. The perturbed sequence is given by 

[ ( 1)], 1 ,
( )

[ ( 1)] ( ), 1 ,
i

i
i N i

F x n i N k
x n

F x n Q n N k i N−

− ≤ ≤ −⎧
= ⎨ − ⊕ − + ≤ ≤⎩

 (8) 

where [ ( )]iF x n  represents the i-th bit of [ ( )].F x n The 
perturbation is applied on the last k bits of [ ( )].F x n  
When ,n l≠ × Δ  no perturbation occurs, so ( ) [ ( 1)].x n F x n= −  

The lower boundary of the system cycle length is given by 
(9) (see appendix): 

( )min 2 1 .kT = Δ × −               (9) 

VI. Simulation Results and Security Analysis  

Some experimental results are given in this section to 
demonstrate the efficiency of our scheme. The plain image 
‘Lena’ in 512×512 format and the corresponding histogram are 
shown in Fig. 8. We also perform some tests on the colored 
Lena image (see Fig. 9(a)). In addition, grayscale and colored 
Mandrill images are used to prove the efficiency of the 
algorithm. The performance of our algorithm is then proved 
through several indicators: the Pearson’s correlation coefficient 
r, number of pixels change rate (NPCR), unified average 
changing intensity (UACI), histograms, plaintext and key 
sensitivity, entropy information H, and NIST statistical tests.  
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Fig. 8. (a) Lena image and (b) its histogram. 
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Fig. 9. Colored (a) Lena and (b) Mandrill images. 
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1. Efficiency of Perturbed PWLCM 

This subsection presents an experimental comparison of the 
original PWLCM and the perturbed PWLCM. Both chaotic 
maps are then used to control the Socek bit-permutation 
method. Then, we show the correlation between the original 
and the obtained permuted images. To do this test, we used the 
original colored images of Lena and Mandrill in 512×512×3 
format (Fig. 9).  

To quantify the dependence between two images, Pearson’s 
correlation coefficient is commonly used. Given by (13), this 
coefficient is obtained by dividing the covariance between the 
two images (12) by the product of their standard deviations as 
in (10) and (11). E in (10) is the expected value operator. P1(i, j) 
and C1(i, j) are pixels gray values of the original and the 
permuted images, respectively. 

1
1 1

1( ) ( , )
M N

i j

E x P i j
M N = =

=
× ∑∑ ,           (10) 

2
1 1 1

1 1

1( ) [ ( , ) ( ( , ))] ,
M N

i j

D P P i j E P i j
M N = =

= −
× ∑∑     (11) 

1 1 1 1 1 1
1 1

1cov( , ) [ ( , ) ( ( , ))][ ( , ) ( ( , ))],
M N

i j

P C P i j E P i j C i j E C i j
M N = =

= − −
× ∑∑

 (12) 

Table 1. Mean values of correlation coefficients of intra-component 
of original and permuted images. 

Permuted image 
using PWLCM 
to control Socek 

method 

Permuted Lena image 
using perturbed 

PWLCM to control 
Socek method 

Correlation 
Lena 
image

Mandrill 
image

Lena Mandrill Lena Mandrill
Red (R) 

component 
Correlation 

0.0642 0.1911 0.0057 0.0171 0.0035 0.0155

Green (G) 
component
Correlation 

0.0426 0.0883 0.0033 0.0066 0.0025 0.0055

Blue (B) 
component 
Correlation 

0.0360 0.0948 0.0051 0.0152 0.0046 0.0138

Mean value 0.0476 0.1247 0.0047 0.0130 0.0035 0.0116

Table 2. Inter-components correlation coefficients of original and 
permuted images. 

Permuted image 
using PWLCM to 

control Socek 
method 

Permuted image 
using perturbed 

PWLCM to control 
Socek method 

Correlation 
Lena 
image

Mandrill 
image

Lena Mandrill Lena Mandrill
Correlation 

between
R and G

0.8786 0.3565 0.1330 0.1280 0.0615 0.0703

Correlation 
between
G and B

0.9106 0.8074 0.0954 0.0684 0.0381 0.0591

Correlation 
between
B and R

0.6764 0.1237 0.0463 0.0161 0.0120 0.0088

 

 

1 1
1 1

1 1

cov( , )
.

( ) ( )P C
P C

r
D P D C

=             (13) 

Tables 1 and 2 give the correlation coefficients of intra-
components and inter-components of original and permuted 
images. It can be seen that the use of chaotic maps reduces 
significantly the intra-component correlation coefficients which 
are already low. However, the proposed perturbed PWLCM 
associated with the Socek method presents the lower average 
correlation coefficient compared to that obtained with a normal 
PWLCM. Results in Table 2 are similar to those in Table 1, and 
the same conclusions can then be formulated.   

2. Histograms of Original and Encrypted Image 

The encrypted image of Lena and its histogram are shown in  
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Fig. 10. (a) Encrypted image of Lena and (b) its histogram. 
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Fig. 10. As we can see, the histogram of the ciphered image is 
fairly uniform and is significantly different from that of the 
original image as shown in Fig. 8(b). 

3. Comparison between Original and Encrypted Image 

Common measures like correlation, NPCR, and UACI are 
used to test the difference between the original image, P1, and 
the encrypted one, C1. 

We calculate the correlation coefficient r of the original and 
encrypted images by using (10)-(13). 

As mentioned, NPCR stands for the number of the pixel 
change rate. Then, if D is a matrix with the same size as images 
P1 and C1, D(i, j) is determined as  

1 11 if ( , ) ( , ),
( , )

0 else.
P i j C i j

D i j
≠⎧

= ⎨
⎩

       (14)  

NPCR is defined by 
1 1

0 0

( , )
NPCR 100,

M N

i j

D i j

M N

− −

= == ×
×

∑∑
         (15) 

where M and N are the width and height of P1 and C1. 
The UACI measures the average intensity of differences 

between the plain image and the ciphered image. UACI is 
defined by  

1 1
1 1

0 0

( , ) ( , )1UACI 100.
255

M N

i j

P i j C i j
M N

− −

= =

−
= ×

× ∑∑    (16) 

In Table 3, we summarize the correlation, NPCR, and UACI 
obtained between the original image and the encrypted ones. It 
is shown that we have obtained a low correlation between the 
original and the encrypted images. The NPCR and UACI are 
high enough to confirm that the two images are very different. 
The high difference between the original and the encrypted 
images and the randomness of the encrypted images prove that 
the algorithm is secure against the cipher text only attack. 

Table 3. Correlation, NPCR, and UACI between original image and 
encrypted ones. 

 Correlation NPCR UACI 

Lena image –0.0022 99.6246 29.9932 

Mandrill image –0.0028 99.6235 33.0823 

 

 
4. Key Sensitivity 

An encryption scheme has to be key-sensitive, meaning that 
a tiny change in the key will cause a significant change in the 
output. In order to demonstrate key sensitivity, the following 
experiments have been performed with a slightly different key.  

Figure 10(a) shows the encrypted image of Lena with the 
following key: alpha=0.35899926, beta=0.25899926, 
x0=0.7239, and y0=0.5672. Here, alpha and beta are the control 
parameters of the PWLCMs, and x0 and y0 are the initial 
conditions of these maps. We encrypt the same image using the 
slightly changed key as follows: alpha=0.35899927. We obtain 
a figure similar to Fig. 10(a).  

Table 4 shows the difference between the two ciphered 
images of Lena. Similar results are obtained for Mandrill 
image. As we can see here, our algorithm is quite sensitive to 
the key. The two obtained encrypted images are very different 
and resemble random data. Our algorithm has a long key of 
128 bits. Because it is very sensitive to the key, it is secure 
against the brute force attack. 
 

Table 4. Correlation, NPCR, and UACI between two ciphered 
images encrypted with slightly different keys. 

 Correlation NPCR UACI 

Lena image 0.0029 99.6128 33.4420 

 

 
5. Plaintext Sensitivity 

For the test of sensitivity on small plain image changes, we 
used two plain images of Lena different by only one bit. The 
obtained encrypted images are identical only in 22%. This 
result demonstrates that the cipher is sensitive to small changes 
in the original image. Then, we can conclude that the algorithm 
resists the plaintext attack and differential attack. 

6. Correlation of Adjacent Pixels 

Statistical analysis conducted on a large amount of images 
shows an average of 8 to 16 adjacent pixels are correlated in  
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Fig. 11. Correlation distributions of two horizontally adjacent
pixels (a) in the original image and (b) in the ciphered
image. 
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Table 5. Correlation coefficients of adjacent pixels. 

Original image Ciphered image  
Model 

Lena  Mandrill Lena  Mandrill  

Horizontal 0.9829 0.9203 0.0377 0.0282 

Vertical 0.9907 0.8631 0.0107 –0.0022 

Diagonal 0.9722 0.8494 0.0119 –0.0193 

 

 
each image. 

To test the correlation between horizontally, vertically, and 
diagonally adjacent pixels from the image, we calculate the 
correlation coefficient of a sequence of adjacent pixels by using 
the following formulas (10)-(13). 

Figure 11 shows the correlation distributions of two 
horizontally adjacent pixels in the original and the ciphered 
images of Lena. In Table 5, we show the correlation 
coefficients of the Lena and Mandrill images. 

7. Information Entropy Analysis 

Entropy is a statistical measure of randomness that can be 
used to characterize the texture of an image. It is well known 
that the entropy H(m) of a message source m can be calculated 
as  

Table 6. Entropy value for images encrypted with different algorithms.

Algorithm Original image Xiang algorithm Proposed image

Entropy 7.3479 7.9950 7.9993 

 

( ) ( ) ( )
2 1

2
0

1log ,
N

i
ii

H m p m
p m

−

=

= ∑          (17) 

where p(mi) represents the probability of message mi, N=8. 
When an image is encrypted, its entropy should ideally be 8. 

If the entropy value is lower than this, a certain degree of 
predictability is introduced which threatens the security of the 
encrypted image. In Table 6, we show the entropy of the 
original image, the one encrypted by using the Xiang algorithm 
[8] and the proposed algorithm. The values obtained are very 
close to the theoretical value 8, and the entropy found using our 
algorithm is better than the value obtained with the Xiang 
algorithm. This means that information leakage in the 
encryption process is negligible, and the encryption system is 
secure against the entropy attack. Similar results are obtained 
using Mandrill image. 

8. NIST Statistical Tests 

Among the numerous standard tests for pseudo-randomness, 
a convincing way to show the randomness of the produced 
sequences is to confront them with the NIST statistical tests. 
The NIST statistical test suite [23] is a statistical package 
consisting of 188 tests that were developed to test the 

Table 7. NIST statistical test for 100 encrypted images by enhanced 
Socek and proposed algorithms. 

Statistical test 
Improved Socek 

algorithm 
Proposed 
algorithm 

Frequency 93 100 

Block frequency 99 98 

Runs 97 97 

Longest run 97 97 

Rank 100 98 

Discrete Fourier Transform 99 97 

Cumulative sums 1 94 100 

Approximate entropy 98 98 

Universal 99 97 

Serial 1 99 98 

 Linear complexity  98 100 

Overlapping templates 99 98 
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randomness of arbitrary long binary sequences produced by 
either hardware-based or software-based cryptographic random 
or pseudorandom number generators. These tests focus on a 
variety of different types of non-randomness that could exist in 
a sequence. 

To verify our results, we use the above test suite to test the 
randomness of a sequence made of 100 encrypted images of 
length 512×512=2,097,152 bits. We tested sequences given by 
the improved Socek algorithm that we proposed in [20] and  
by the algorithm we are proposing here. In Table 7, we show 
the results for a number of tests. The sequences passed all the 
other tests. These results are not shown here. Note that the 100 
encrypted images were generated with randomly selected 
secret keys.  

VII. Propagation Error 

A bit error is the substitution of a ‘0’ bit for a ‘1’ bit, or vice 
versa. These errors are generated by the transmission channel 
as a consequence of interference and noise. The error 
propagation phenomenon implies that errors in the encrypted 
text produce errors in the decrypted plaintext. Therefore, it is 
important that the decrypting process be able to recover from 
bit errors in the ciphertext.  

In this section, we examine the problem of error propagation 
in two cipher block modes of operation, CBC and OFB, using 
the Lena image. Similar results are obtained for the Mandrill 
image. As we can see in Table 8, in CBC mode, all bit positions  

 

Table 8. Effects of bit errors using proposed algorithm in cipher
block modes of operation OFB and CBC. 

Number of erroneous  
blocks in deciphered image 

Erroneous blocks in 
deciphered image 

Erroneous  
blocks in  

ciphered image OFB mode CBC mode OFB mode CBC mode

(1, 1) 1 2 (1, 1) (1, 1), (1, 4)

(50, 100) 1 2 (50, 100) 
(50, 100), 
(50, 104)

(405, 238) 1 2 (405, 238) 
(405, 238), 
(405, 241)

Table 9. Effects of bit errors using Socek algorithm in CBC operation
mode. 

Erroneous blocks in the 
ciphered image  

Number of erroneous blocks in 
the deciphered image 

(1, 1) 527 

(50, 100) 1250 

(405, 238) 228 

 

that contain bit errors in a cipher text block will produce an 
random bit error in the same decrypted block and a specific bit 
error in another one. The other bit positions are not affected. 
For the OFB mode, bit errors within a ciphertext block do not 
affect the decryption of any other block.  

The results obtained for Socek, Yang, Lian, and Wong 
algorithms are not compliant with the recommendations 
exposed in [24]. For example, Table 9 gives the effects of bit 
error using Socek algorithm.  

In fact, in their algorithms, they use a perturbation technique 
of the chaotic map or a diffusion method using the encrypted 
data. Then, if a transmission error occurs in the ciphered image, 
there are random errors in the decrypted image. However, in 
our algorithm, we perturb the chaotic value with an LFSR, and 
the permuted blocks are independent. As a result, we manage 
to avoid the propagation error in the decrypted image. 

VIII. Conclusion 

In this paper, a new chaos-based cryptosystem is proposed. 
Our cryptosystem is based on the original Socek algorithm, as 
well as the algorithms developed by Xiang, Yang, and Wong, 
but unlike previous algorithms, ours produces cryptograms 
suitable for transmission on insecure and noisy channels. 

Furthermore, the introduction of the perturbation technique 
has expanded the length of the chaotic orbit cycle and 
enhanced the dynamic statistical properties of the generated 
chaotic sequences. The obtained results of uniformity, key 
sensitivity, plaintext sensitivity, correlation, entropy, and NIST 
statistical tests prove the robustness and the high security level 
of the proposed cryptosystem. 

Appendix  

Theoretical Analysis of Expanded Cycle Length 
Assume that the system has entered a period T state after n0 

iterations, that is, ( ) ( )i ix n T x n+ = ( )0for n > n ; 1 i N≤ ≤  
and 1 1 0n l n= × Δ > (l1 is a positive integer), then 

1 1( ) ( )i ix n T x n+ = for1 .i N≤ ≤  If T l≠ × Δ  (l is a positive 
integer), the above equation implies 1[ ( 1 )]iF x n T− + =  

1 1[ ( 1)] ( )i N iF x n Q l−− ⊕ (for 1 ).N k i N− + ≤ ≤ Since period 
T is defined as 1 1[ ( 1 )] [ ( 1)]i iF x n T F x n− + = −  
(for  1 ),i N≤ ≤  thus, 1( ) 0N iQ l− = (for 1 ).N k i N− + ≤ ≤  
Because the initial sequences 0 1 1, ,..., kQ Q Q −  are not all zeros, 
the previous case will not occur. This implies that we only have 

,T l= × Δ which means 1 1[ ( 1 )] ( )i N iF x n T Q l l−− + ⊕ + =  

1 1[ ( 1)] ( )i N iF x n Q l−− ⊕  (for 1 ).N k i N− + ≤ ≤  As a result, 
we find  1 1( ) ( )N i N iQ l l Q l− −+ = (for 1 ).N k i N− + ≤ ≤  This 
implies ( )2 1 ,kl σ= −  where σ is a positive integer. 
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Therefore, the system cycle length is given by 
(2 1),kT σ= × Δ × − and min (2 1)LT = Δ × − is the lower 

bound of the system cycle length. 
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