• Title/Summary/Keyword: Dynamic contrast-enhanced MR imaging

Search Result 31, Processing Time 0.029 seconds

Assessment of Non-permeability of Gd-DTPA for Dynamic Susceptibility Contrast in Human Brain: A Preliminary Study Using Non-linear Curve Fitting (뇌영역의 동적 자화율 대조도 영상에서 Gd-DTPA 조영제의 비투과성 조사: 새로운 비선형 곡선조화 알고리즘 개발의 예비연구)

  • Yoon, Seong-Ik;Jahng, Geon-Ho;Khang, Hyun-Soo;Kim, Young-Joo;Choel, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • To develop an advanced non-linear curve fitting (NLCF) algorithm for performing dynamic susceptibility contrast study of the brain. The first pass effects give rise to spuriously high estimates of $K^{trans}$ for the voxels that represent the large vascular components. An explicit threshold value was used to reject voxels. The blood perfusion and volume estimation were accurately evaluated in the $T2^*$-weighted dynamic contrast enhanced (DCE)-MR images. From each of the recalculated parameters, a perfusion weighted image was outlined by using the modified non-linear curve fitting algorithm. The present study demonstrated an improvement of an estimation of the kinetic parameters from the DCE $T2^*$-weighted magnetic resonance imaging data with using contrast agents.

  • PDF

Dynamic Contrast-Enhanced MR Imaging in Detecting Local Tumor Progression after HIFU Ablation of Localized Prostate Cancer (국소적 전립선암의 고강도 집속 초음파 치료 후 국소적 암 재발의 발견과 역동적 조영증강 자기공명영상의 역할)

  • Park, Jung Jae;Kim, Chan Kyo;Lee, Hyun Moo;Park, Byung Kwan;Park, Sung Yoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.3
    • /
    • pp.192-199
    • /
    • 2013
  • Purpose : To retrospectively evaluate the diagnostic performance of dynamic contrast-enhanced MR imaging (DCE-MRI) in detecting recurrent prostate cancer after HIFU of clinically localized cancer, as compared with T2-weighted imaging (T2WI). Materials and Methods: Twenty-six patients with increased prostate-specific antigen levels after HIFU were included in this study. All MR examinations were performed using T2WI and DCE-MRI, followed by transrectal ultrasound-guided biopsy. MRI and biopsy results were correlated in six prostate sectors. Residual or recurrent cancer after HIFU was defined as local tumor progression if biopsy results showed any cancer foci. Two independent readers interpreted the MR images. Results: Of 156 prostate sectors, 51 (33%) were positive for cancer in 17 patients. For detecting local tumor progression, the sensitivity of DCE-MRI and T2WI was 80% and 57% for reader 1 (P < 0.001) versus 84% and 61% for reader 2 (P < 0.001), respectively. The specificity and overall accuracy between DCE-MRI and T2WI showed no statistical difference in both readers (P > 0.05). Interobserver agreement of DCE-MRI and T2WI was moderate and fair, respectively. Conclusion: For detecting local tumor progression of prostate cancer after HIFU, DCE-MRI was more sensitive than T2WI, with less interobserver variability.

Cerebral Blood Volume Mapping from Dynamic Susceptibility Contrast Magnetic Resonance Images (Dynamic Susceptibility Contrast Magnetic Resonance Images를 이용한 뇌혈류량 지도 구성)

  • Kim, S.J.;Lee, S.K.;Kim, K.G.;Kim, J.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.281-282
    • /
    • 1998
  • Recently, there has been growing interest in the assessment of physiological parameters on brain perfusion that provide more information than pure morphologic diagnosis. Quantification of parameters that characterize cerebral micro-circulation with magnetic resonance imaging is of great relevance for clinical application. We determine the local tissue concentration by exponential relationship between the relative signal reduction S(t)/$S_0$ and local tissue concentration of contrast material $C_m(t)$ in dynamic susceptibility contrast enhanced MR imaging. And then we made relative regional blood volume map by calculating the area under the measured concentration-time curves $C_m(t)$ during first pass of paramagnetic contrast material as a preliminary step for perfusion map. These images make it possible to compare the rCBV in different brain regions in one individual at a time. We have it in contemplation to obtain arterial and brain signal time curves simultaneously to make absolute rCBV and perfusion (rCBF) map. These maps may provide the method of comparative investigations of different patients having strong variation in AIF.

  • PDF

Assessment of Additional MRI-Detected Breast Lesions Using the Quantitative Analysis of Contrast-Enhanced Ultrasound Scans and Its Comparability with Dynamic Contrast-Enhanced MRI Findings of the Breast (유방자기공명영상에서 추가적으로 발견된 유방 병소에 대한 조영증강 초음파의 정량적 분석을 통한 진단 능력 평가와 동적 조영증강 유방 자기공명영상 결과와의 비교)

  • Sei Young Lee;Ok Hee Woo;Hye Seon Shin;Sung Eun Song;Kyu Ran Cho;Bo Kyoung Seo;Soon Young Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.4
    • /
    • pp.889-902
    • /
    • 2021
  • Purpose To assess the diagnostic performance of contrast-enhanced ultrasound (CEUS) for additional MR-detected enhancing lesions and to determine whether or not kinetic pattern results comparable to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast can be obtained using the quantitative analysis of CEUS. Materials and Methods In this single-center prospective study, a total of 71 additional MR-detected breast lesions were included. CEUS examination was performed, and lesions were categorized according to the Breast Imaging-Reporting and Data System (BI-RADS). The sensitivity, specificity, and diagnostic accuracy of CEUS were calculated by comparing the BI-RADS category to the final pathology results. The degree of agreement between CEUS and DCE-MRI kinetic patterns was evaluated using weighted kappa. Results On CEUS, 46 lesions were assigned as BI-RADS category 4B, 4C, or 5, while 25 lesions category 3 or 4A. The diagnostic performance of CEUS for enhancing lesions on DCE-MRI was excellent, with 84.9% sensitivity, 94.4% specificity, and 97.8% positive predictive value. A total of 57/71 (80%) lesions had correlating kinetic patterns and showed good agreement (weighted kappa = 0.66) between CEUS and DCE-MRI. Benign lesions showed excellent agreement (weighted kappa = 0.84), and invasive ductal carcinoma (IDC) showed good agreement (weighted kappa = 0.69). Conclusion The diagnostic performance of CEUS for additional MR-detected breast lesions was excellent. Accurate kinetic pattern assessment, fairly comparable to DCE-MRI, can be obtained for benign and IDC lesions using CEUS.

Radiologic Findings of Renal Oncocytomas (신장 호산성과립세포종의 영상의학적 소견)

  • Cho, Jae-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.26 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Purpose : To radiologically differentiate renal oncocytoma from other renal solid tumors, we analyzed and characterized, retrogradely, radiologic findings of renal oncocytomas. Materials and Methods : Radiologic findings of pathologically proven renal oncocytoma were analyzed in 9 patients. CT was performed in all patients, ultrasonography in 4 patients and MRI in 3 patients.(51) Results : On ultrasonography, the echogenicity of the mass was slightly more hyperechoic than normal renal parenchyma in all 4 cases. Two cases were homogeneous and the remaining two cases were relatively homogeneous. On CT, all 8 cases showed iso-density to slightly low density compared to normal renal parenchyma and 5 cases were homogeneous but the central portion of the mass was of a slightly lower density than the peripheral portion in 3 cases. All six cases had an arterial phase scan and were heterogeneously enhanced. An irregular, lower-enhancing portion was found in the central portion of the mass. Segmental inversion of contrast enhancement was found in 5 of 6 cases that had a dynamic enhancement study. On MR T1-weighted imaging, the mass was of iso-signal intensity to normal renal parenchyma and the central portion of the mass had a slightly hypo-signal intensity than the peripheral portion. On T2-weighted imaging, 2 cases were heterogeneous; the peripheral portion was of low signal intensity and central portion was of higher signal intensity than normal renal parenchyma. One case was relatively homogeneous and showed a slightly lower signal intensity than that of normal parenchyma, except for a central small portion showing high signal intensity. For 2 cases that had a dynamic study, a segmental inversion of contrast enhancement was noted. Conclusion : Renal oncocytoma is seen as a well-marginated solid mass lesion. On enhanced scans it is heterogeneously enhanced and segmental inversion of contrast enhancement may be seen. The possibility of oncocytoma can be suggested in cases showing these radiologic findings.

  • PDF

Preoperative Prediction of Ductal Carcinoma in situ Underestimation of the Breast using Dynamic Contrast Enhanced and Diffusion-weighted Imaging (역동적 유방 자기공명 영상 및 확산 강조영상을 이용한 관상피내암종 저평가 수술전 예측)

  • Park, Mina;Kim, Eun-Kyung;Kim, Min Jung;Moon, Hee Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Objective: To investigate roles of dynamic contrast enhanced magnetic resonance (DCE MR) and diffusion-weighted (DW) imaging in preoperative prediction of underestimation of ductal carcinoma in situ (DCIS) ${\geq}2cm$ on US guided core needle biopsy. Materials and Methods: Twenty two patients with DCIS on US-guided 14 gauge core needle biopsy were included. Patients were divided into a group with and without DCIS underestimation based on histopathology. MR images including DCE and DW imaging were obtained with a 3.0-T MR. The lesion type (mass or non-mass), enhancement pattern, peak enhancement, and apparent diffusion coefficient (ADC) values of proven malignant masses were generated using software of CADstream and compared between two groups using Fisher's exact test and Mann Whitney test. Results: Eight patients were in the group with underestimation and 14 patients were in the group without underestimation. The lesion type and enhancement pattern were not different between two groups (P values = 1.000 and 0.613, respectively). The median peak enhancement of lesions with underestimation was 159.5%, higher than 133.5% of those without underestimation, but not significant (P value = 0.413). The median ADC value of lesions with underestimation was $1.26{\times}10^{-3}mm^2/sec$, substantially lower than $1.35{\times}10^{-3}mm^2/sec$ of those without underestimation (P value = 0.094). Conclusion: ADC values had the potential to preoperatively predict DCIS underestimation on US-guided core needle biopsy, although a large prospective series study should be conducted to confirm these results.

Advanced Abdominal MRI Techniques and Problem-Solving Strategies (복부 자기공명영상 고급 기법과 문제 해결 전략)

  • Yoonhee Lee;Sungjin Yoon;So Hyun Park;Marcel Dominik Nickel
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.345-362
    • /
    • 2024
  • MRI plays an important role in abdominal imaging because of its ability to detect and characterize focal lesions. However, MRI examinations have several challenges, such as comparatively long scan times and motion management through breath-holding maneuvers. Techniques for reducing scan time with acceptable image quality, such as parallel imaging, compressed sensing, and cutting-edge deep learning techniques, have been developed to enable problem-solving strategies. Additionally, free-breathing techniques for dynamic contrast-enhanced imaging, such as extra-dimensional-volumetric interpolated breath-hold examination, golden-angle radial sparse parallel, and liver acceleration volume acquisition Star, can help patients with severe dyspnea or those under sedation to undergo abdominal MRI. We aimed to present various advanced abdominal MRI techniques for reducing the scan time while maintaining image quality and free-breathing techniques for dynamic imaging and illustrate cases using the techniques mentioned above. A review of these advanced techniques can assist in the appropriate interpretation of sequences.

Non-Functioning, Malignant Pancreatic Neuroendocrine Tumor in a 16-Year-old Boy: A Case Report (16세 남아에서 발생한 췌장의 비기능성 악성 신경내분비 종양: 증례 보고)

  • Lim, Se-Woong;Lee, Young-Hwan;Choi, See-Sung;Cho, Hyun-Sun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • We report the case of a 16-year-old boy with a solid pancreatic mass which proved to be a nonfunctioning, malignant pancreatic neuroendocrine tumor (PNET). In pediatric patients, malignant pancreatic tumors are rare, especially malignant PNET. When dynamic contrast enhanced MRI showed a well enhancing solid pancreatic tumor on arterial and delayed phases and combined with malignant features, such as vascular invasion, invasion of adjascent organs, and lymphadenopathy, we should include malignant pancreatic neuroendocrine tumor in the differential diagnosis of childhood pancreatic tumors.

Clinical Utility of Turbo Contrase-Enhanced MR Angiography for the Major Branches of the Aortic Arch (대동맥궁 주요 분지들의 고속 조영증강 자기공명혈관조영술의 임상적 유용성)

  • Su Ok Seong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • Purpose : To assess the clinical utility of turbo contrast-enhanced magnetic resonance angiography(CE MRA) in the evaluation of the aortic arch and its major branches and to compare the image quality of CE MRA among different coils used. Materials and Methods : Turbo three-phase dynamic CE MRA encompassing aortic arch and its major branches was prospectively performed after manual bolus IV injection of contrast material in 29 patients with suspected cerebrovascular diseases at 1.0T MR unit. the raw data were obtained with 3-D FISH sequence (TR 5.4ms, TE 2.3ms, flip angle 30, slab thickness 80nm, effective slice thickness 4.0mm, matrix size $100{\times}256$, FOV 280mm). Total data acquisition time was 4. to 60 seconds. We subjectively evaluated the imge quality with three-rating scheme : "good" for unequivocal normal finding, "fair" for relatively satisfactory quality to diagnose 'normal' despite intravascular low signal, and "poor" for equivocal diagnosis or non-visualization of the origin or segment of the vessels due to low signal or artifacts which needs catheter angiography. At the level of the carotid bifurcation, it was compared with conventional 2D-TOF MRA image. Overall image quality was also compared visually and quantitatively by measuring signal-to-noise ratios (SNRs) of the ascending aorta, the innominate artery and both common carotid arteries among the three different coils used(CP body array(n=12), CP neck array(n=9), and head-and-neck(n=8). Results : Demonstration of the aortic arch and its major branches was rated as "good" in 55% (16/29) and "fair" in 34%(10/29). At the level of the carotid bifurcation, image quality of turbo CE MRA was same as or better than conventional 2D-TOF MRA in 65% (17/26). Overall image quality and SNR were significantlygreater with CP body array coil than with CP neck array or head-and-neck coil. Conclusions : Turbo CE MRA can be used as a screening exam in the evaluation of the major branches of the aortic arch from their origin to the skull base. Overall imagequality appears to be better with CP body array coil than with CP neck array coil or head-and-neck coil.

  • PDF

Usefulness of Three-Dimensional Maximal Intensity Projection (MIP) Reconstruction Image in Breast MRI (유방자기공명영상에서 3 차원 최대 강도 투사 재건 영상의 유용성)

  • Kim, Hyun-Sung;Kang, Bong-Joo;Kim, Sung-Hun;Choi, Jae-Jeong;Lee, Ji-Hye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.183-189
    • /
    • 2009
  • Purpose : To evaluate the usefulness of three-dimensional (3D) maximal intensity projection (MIP) reconstruction method in breast MRI. Materials and Methods : Total 54 breasts of consecutive 27 patients were examined by breast MRI. Breast MRI was performed using GE Signa Excite Twin speed (GE medical system, Wisconsin, USA) 1.5T. We obtained routine breast MR images including axial T2WI, T1WI, sagittal T1FS, dynamic contrast-enhanced T1FS, and subtraction images. 3D MIP reconstruction images were obtained as follows; subtraction images were obtained using TIPS and early stage of contrast-enhanced TIPS images. And then 3D MIP images were obtained using the subtraction images through advantage workstation (GE Medical system). We detected and analyzed the lesions in the 3D MIP and routine MRI images according to ACR $BIRADS^{(R)}$ MRI lexicon. And then we compared the findings of 3D MIP and those of routine breast MR images and evaluated whether 3D MIP had additional information comparing to routine MR images. Results : 3D MIP images detect the 43 of 56 masses found on routine MR images (76.8%). In non-mass like enhancement, 3D MIP detected 17 of 20 lesions (85 %). And there were one hundred sixty nine foci at 3D MIP images and one hundred nine foci at routine MR images. 3D MIP images detected 14 of 23 category 3 lesions (60.9%), 11 of 16 category 4 lesions (68.87%), 28 of 28 Category 5 lesions (100%). In analyzing the enhancing lesions at 3D MIP images, assessment categories of the lesions were correlated as the results at routine MR images (p-value < 0.0001). 3D MIP detected additional two daughter nodules that were descriped foci at routine MR images and additional one nodule that was not detected at routine MR images. Conclusion : 3D MIP image has some limitations but is useful as additional image of routine breast MR Images.

  • PDF