• Title/Summary/Keyword: Dynamic constraints

Search Result 683, Processing Time 0.029 seconds

Control Method for State Constrained Control Systems: Dynamic Anti-Widup Based Approach (동적 와인드엎 방지법에 기초한 상태 제한이 존재하는 시스템의 제어 방법)

  • Park, Jong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.672-681
    • /
    • 2000
  • Based on the dynamic anti-windup strategy a novel control methodology for state constrained control systems is presented. First a linear controller is designed for an open-loop stable plant to show a desirable nominal performance by ignoring state constraints. And then an additional dynamic compensator is introduced to preserve the nominal performance as closely as possible int he face of state constraints. This paper focuses on the second step under the assumption that a linear controller has already been designed appropriately by using an effective controller design method. By minimizing a reasonable performance index the dynamic compensator is derived explicitly which is expressed int he plant and controller parameters. the proposed method not only guarantees the total stability of the overall resulting systems but also provides desirable output performance because it solves the state-positioning problem completely.

  • PDF

Structural Design Optimization of a High Speed Machining Center by Using a Simple Genetic Algorithm (유전 알고리즘을 이용한 고속 금형센터의 구조설계 최적화)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1006-1009
    • /
    • 2000
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduced in order to minimize the static compliance, the dynamic compliance, and the weight of a high speed machining center simultaneously. Dimensional thicknesses of the eight structural members on the static force loop are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body only was reduced to 57.75% and the weight of the whole machining center was reduced to 46.2% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even though they were slightly increased than before.

  • PDF

상대 이음 좌표 방법을 이용한 링키지 메카니즘에 대한 동역학적 해석에 관한 연구

  • 이동찬;배대성;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.339-343
    • /
    • 1992
  • For the analysis of dynamic behavior of dynamic behavior of multibody systems by cartesian coordinate method, maximal sets of generalized coordinates and maximum numbers of differential equation and constraints must be considered. Therefore the inefficiency of the increase of CPU time is occurred. This paper is to analyze the dynamic system by using the relative coordinate method without violating the geometric condition of systems. The graph theory and system topology were used for this study. The dynamic systems could be analyzed by the automatic generation of the informations like equation of motion, constraints, and external forces etc. And the results were compared and verified with dynamic commercial package DADS.

Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Vibrations (마이크로 밀링 머신의 저진동.경량화를 위한 구조 최적설계)

  • Jang, Sung-Hyun;Kwon, Bong-Chul;Choi, Young-Hyu;Park, Jong-Kweon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • This paper presents structural design optimization of a micro milling machine for minimum weight and compliance using a genetic algorithm with dynamic penalty function. The optimization procedure consists of two design stages, which are the static and dynamic design optimization stages. The design problem, in this study, is to find out thickness of structural members which minimize the weight, the static compliance and the dynamic compliance of the micro milling machine under several constraints such as dimensional constraints, maximum compliance limit, and safety factor criterion. Optimization results showed a great reduction in the static and dynamic compliances at the spindle nose of the micro milling machine in spite of a little decrease in the machine weight.

Multiperiod Mean Absolute Deviation Uncertain Portfolio Selection

  • Zhang, Peng
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.63-76
    • /
    • 2016
  • Multiperiod portfolio selection problem attracts more and more attentions because it is in accordance with the practical investment decision-making problem. However, the existing literature on this field is almost undertaken by regarding security returns as random variables in the framework of probability theory. Different from these works, we assume that security returns are uncertain variables which may be given by the experts, and take absolute deviation as a risk measure in the framework of uncertainty theory. In this paper, a new multiperiod mean absolute deviation uncertain portfolio selection models is presented by taking transaction costs, borrowing constraints and threshold constraints into account, which an optimal investment policy can be generated to help investors not only achieve an optimal return, but also have a good risk control. Threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Based on uncertain theories, the model is converted to a dynamic optimization problem. Because of the transaction costs, the model is a dynamic optimization problem with path dependence. To solve the new model in general cases, the forward dynamic programming method is presented. In addition, a numerical example is also presented to illustrate the modeling idea and the effectiveness of the designed algorithm.

Supply Chain Management from the Strategic Perspective through the Theory of Constraints (TOC 이론을 기반으로 한 전략적 관점에서의 공급사슬관리)

  • 간형식;김기주;황재훈
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.95-106
    • /
    • 2002
  • As the information technology including Internet not only opened the cyber world but also has evolved as a platform that enables a new generation of businesses and remolds the shape of thinking and the rules of supply chain management (SCM). By using the Theory of Constraints, which seems simple but robust to review the traditional SCM context, the paper proposes a conceptual framework to handle the SCM issues. From the strategic perspective, this paper focuses on three policy constraints: supplier-manufacturer oriented constraints, manufacturer-distributor oriented constraints, and supply chain oriented constraints. To optimize the throughput and sustain the competitiveness of supply chain members in the dynamic business environment, the companies should utilize the potential competency of information technology and consistently perform the activities of removing and/or reinforcing the constraints.

  • PDF

Improved Gauss Pseudospectral Method for UAV Trajectory Planning with Terminal Position Constraints

  • Qingquan Hu;Ping Liu;Jinfeng Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.563-575
    • /
    • 2023
  • Trajectory planning is a key technology for unmanned aerial vehicles (UAVs) to achieve complex flight missions. In this paper, a terminal constraints conversion-based Gauss pseudospectral trajectory planning optimization method is proposed. Firstly, the UAV trajectory planning mathematical model is established with considering the boundary conditions and dynamic constraints of UAV. Then, a terminal constraint handling strategy is presented to tackle terminal constraints by introducing new penalty parameters so as to improve the performance index. Combined with Gauss-Legendre collocation discretization, the improved Gauss pseudospectral method is given in detail. Finally, simulation tests are carried out on a four-quadrotor UAV model with different terminal constraints to verify the performance of the proposed method. Test studies indicate that the proposed method performances well in handling complex terminal constraints and the improvements are efficient to obtain better performance indexes when compared with the traditional Gauss pseudospectral method.

Sliding Mode Control for Nonholonomic Dynamic Systems (비홀로노믹 동적 시스템을 위한 슬라이딩 모드 제어)

  • 양정민
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.998-1003
    • /
    • 2002
  • As nonholonomic dynamic systems have constraints imposed on motions that are not integrable, i.e., the constraints cannot be written as time derivatives of some functions of generalized coordinates, advanced techniques are needed for their control. In this paper, a sliding mode tracking control for nonholonomic dynamic systems is proposed. By introducing a general scheme of coordinate transformation, the state of nonholonomic systems is mapped into a bounded space and a robust controller for dynamic models of nonholonomic systems with input disturbances is designed using sliding mode control scheme. Simulation results of tacking control for a nonholonomic mobile robot with two actuated wheels are provided to show the effectiveness of the proposed controller.

A numerical method for dynamic analysis of cam-follower mechanism including impact, separation and elastic deformation (충격분리 및 탄성변형을 포함한 캠-종동절 기구의 동역학적 해석을 위한 수치해석적 방법)

  • Lee, Gi-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.519-528
    • /
    • 1998
  • A numerical method is presented for the dynamic analysis of cam and follower. Contact and separation between the cam and the follower are analyzed by imposing dynamic contact condition. The correct solution is obtained without spurious oscillation by imposing the velocity and acceleration constraints as well as the displacement constraint on the possible contact point. The constraints are satisfied by iteratively reducing the constraint errors toward zero, and a simple time integration of ordinary differential equation is employed for the solution of the equation of motion. The solution procedure associated with the iterative scheme is presented, and numerical simulations are conducted to demonstrate the accuracy of the solution.

An Improved Dynamic Programming Approach to Economic Power Dispatch with Generator Constraints and Transmission Losses

  • Balamurugan, R.;Subramanian, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.320-330
    • /
    • 2008
  • This paper presents an improved dynamic programming (IDP) approach to solve the economic power dispatch problem including transmission losses in power systems. A detailed mathematical derivation of recursive dynamic programming approach for the economic power dispatch problem with transmission losses is presented. The transmission losses are augmented with the objective function using price factor. The generalized expression for optimal scheduling of thermal generating units derived in this article can be implemented for the solution of the economic power dispatch problem of a large-scale system. Six-unit, fifteen-unit, and forty-unit sample systems with non-linear characteristics of the generator, such as ramp-rate limits and prohibited operating zones are considered to illustrate the effectiveness of the proposed method. The proposed method results have been compared with the results of genetic algorithm and particle swarm optimization methods reported in the literature. Test results show that the proposed IDP approach can obtain a higher quality solution with better performance.