• 제목/요약/키워드: Dynamic constraint

검색결과 446건 처리시간 0.023초

트랙좌표계를 이용한 철도차량의 동역학 해석에 관한 연구 (A Study on the Dynamic Analysis of Railway Vehicle by Using Track Coordinate System)

  • 강주석
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.122-130
    • /
    • 2013
  • Rail geometries such as cant, grade and curvature can be easily represented by means of a track coordinate system. In this analysis, in order to derive a dynamic and constraint equation of a wheelset, the track coordinate system is used as an intermediate stage. Dynamic and constraint equations of railway vehicle bodies except the wheelset are written in the Cartesian coordinate system as a conventional method. Therefore, whole dynamic equations of a railway vehicle are derived by combining wheelset dynamic equations and dynamic equations of railway vehicle bodies. Constraint equations and constraint Jacobians are newly derived for the track coordinate system. A process for numerical analysis is suggested for the derived dynamic and constraint equations of a railway vehicle. The proposed dynamic analysis of a railway vehicle is validated by comparison against results obtained from VI-RAIL analysis.

제한 시스템의 분석 및 평가 (Analysis and Evaluation for Constraint Enforcement System)

  • 홍민;박두순;최유주
    • 한국시뮬레이션학회논문지
    • /
    • 제18권2호
    • /
    • pp.57-64
    • /
    • 2009
  • 물리적 기반의 다이내믹 시뮬레이션에 있어서 안정적이고 효율적인 제한 시스템은 매우 중요한 요소 중 하나이다. 본 논문은 기존에 널리 사용되고 있는 제한 시스템들(Lagrange Multiplier method, Baumgarte stabilization method, Post-stabilization Method, Implicit constraint enforcement method, Fast projection method)에 대한 분석과 평가를 통해 제한 시스템을 사용하고자 하는 사용자들에게 적절한 선택을 할 수 있는 지침을 제공하고자 한다. 본 논문은 기존의 제한 방법들에 대한 수학적 수식들이 설명되어 있고, 제한 오차 비교, 계산 비용, 동적 움직임 분석 등을 통해 기존 제한 시스템들 각각에 대한 평가를 제공한다.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

A Direct Utility Model with Dynamic Constraint

  • Kim, Byungyeon;Satomura, Takuya;Kim, Jaehwan
    • Asia Marketing Journal
    • /
    • 제18권4호
    • /
    • pp.125-138
    • /
    • 2017
  • The goal of the study is to understand how consumers' constraint as opposed to utility structure gives rise to final decision when consumers purchase more than one variant of product at a time, i.e., horizontal variety seeking or multiple-discreteness. Purchase and consumption decision not only produces utility but also involves some sort of cognitive pressure. Past consumption or last purchase is likely to be linked to this burden we face such as concern for obesity, risk of harm, and guilt for mischief. In this research, the existence and the role of dynamic constraint are investigated through a microeconomic utility model with multiple dynamic constraint. The model is applied to the salty snacks data collected from field study where burden for spiciness serves as a constraint. The results are compared to the conventional multiple discreteness choice models of static constraints, and policy implications on price discounts is explored. The major findings are that first, one would underestimate the level of consumer preference for product offerings when ignoring the carry-over of the concern from the past consumption, and second, the impact of price promotion on demand would be properly evaluated when the model allows for the role of constraint as both multiple and dynamic. The current study is different from the existing studies in two ways. First, it captures the effect of 'mental constraint' on demand in formal economic model. Second, unlike the state dependence well documented in the literature, the study proposes the notion of state dependence in different way, via constraint rather than utility.

궤환선형화 가능한 비선형 시스템의 입력제한을 고려한 동적 와인드엎 방지 (A Dynamic Anti-windup Scheme for Input-constrained Feedback Linearizable Nonlinear Systems)

  • 윤성식;박종구;윤태웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.534-534
    • /
    • 2000
  • This paper proposes a dynamic compensation scheme for input-constrained feedback linearizable nonlinear systems to cope with the windup phenomenon. Given a feedback linearizing controller for such a nonlinear system designed without considering its input constraint, an additional dynamic compensator is proposed to account for the constraint. This dynamic anti-windup is based on the minimization of a reasonable performance index, and some stability properties of the resulting closed-loop are presented.

  • PDF

CBAbench: An AutoCAD-based Dynamic Geometric Constraint System

  • Gong, Xiong;Wang, Bo-Xing;Chen, Li-Ping
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.173-181
    • /
    • 2006
  • In this paper, an integration framework of Geometric Constraint Solving Engine and AutoCAD is presented, and a dynamic geometric constraint system is introduced. According to inherent orientation features of geometric entities and various Object Snap results of AutoCAD, the' proposed system can automatically construct an under-constrained geometric constraint model during interactive drawing. And then the directed constraint graph in a geometric constraint model is realtime modified in order to produce an optimal constraint solving sequence. Due to the open object-oriented characteristics of AutoCAD, a set of user-defined entities including basic geometric elements and graphics constraint relations are defined through derivation. And the custom-made Object Reactor and Command Reactor are also constructed. Several powerful characteristics are achieved based on these user-defined entities and reactors, including synchronously processing geometric constraint information while saving and opening DWG files, visual constraint relations, and full adaptability to Undo/Redo operations. These characteristics of the proposed system can help the designers more easily manage geometric entities and constraint relations between them.

평기어의 동접촉 해석 (Dynamic Contact Analysis of Spur Gears)

  • 이기수;장태사
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.148-159
    • /
    • 1999
  • A numerical method is presented for the dynamic analysis of spur gears rotating with very high angular speeds. For an efficient computation each gear is assumed to consist of a rotating rigid disk and an elastic tooth having mass, and finite element formulations are used for the equations of motion of the tooth. The geometric constraint is imposed between the rigid disk and the elastic tooth to fix them, and contact condition is imposed between the meshing teeth of the gears. At each iteration of each time step the Lagrange multiplier and contact force are revised by using the constraint error vector, and then the whole equations of motion are time integrated with the given Lagrange multiplier and contact force. For the accurate solution the velocity and acceleration constraints as well as the displacement constraint are satisfied by the monotone reductions of the constraint error vectors. Computing procedures associated with the iterative schemes are explained and numerical simulations are conducted with the spur gears.

  • PDF

동적 환경하에서의 충돌 예측 및 감지 (Collision prediction and detection in a dynamic environment)

  • 한인환;양우석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.309-314
    • /
    • 1992
  • Many dynamic mechanical systems, such as parts-feeders, walking machines, and percussive power tools, are described by equations of motion which are discontinuous. The discontinuities result from kinematic constraint changes which are difficult to foresee, especially in presence of impact. A simulation algorithm for these types of systems must be able to algorithmically predict and detect the kinematic constraint changes without any prior knowledge of the system's motion. This paper presents a rule-based approach to the prediction and detection of kinematic constraint changes between bodies with arc and line boundaries. The developed algorithm's ability to accurately and automatically detect the unpredicted changes of kinematic constraints is demonstrated with a numerical example.

  • PDF

OPTIMAL CONSUMPTION, PORTFOLIO, AND LIFE INSURANCE WITH BORROWING CONSTRAINT AND RISK AVERSION CHANGE

  • Lee, Ho-Seok
    • 충청수학회지
    • /
    • 제29권2호
    • /
    • pp.375-383
    • /
    • 2016
  • This paper investigates an optimal consumption, portfolio, and life insurance strategies of a family when there is a borrowing constraint and risk aversion change at the time of death of the breadwinner. A CRRA utility is employed and by using the dynamic programming method, we obtain analytic expressions for the optimal strategies.

An Approach of Solving the Constrained Dynamic Programming - an Application to the Long-Term Car Rental Financing Problem

  • Park, Tae Joon;Kim, Hak-Jin;Kim, Jinhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권12호
    • /
    • pp.29-43
    • /
    • 2021
  • 본 연구에서 제약식프로그래밍을 이용하여 제약식 있는 동적계획법 모형을 푸는 한 방법을 제시한다. 현재 제약식 있는 동적계획법을 다루는 방법은 각 단계별 제약식들의 상태를 일반적인 동적계획법의 상태공간에 추가하여 마치 제약식이 없는 동적계획법 방식을 적용하는데 반해, 이 연구에서 제시하는 방식은 제약식의 상태가 제약식프로그래밍의 변수 도메인으로 표현되고 저장된다. 계산에 있어서도 일반적인 동적계획법의 벨만방정식의 해법과 함께 제약식을 다루기 위한 제약식프로그래밍의 확산-추론 방법을 사용하는 하이브리드 방식을 따른다. 이 두가지 방식의 비교를 위해 특별히 장기 자동차 렌탈 문제를 제시하고 이 문제의 단순화된 모형을 중심으로 다른 방식으로 해결하는 과정을 보고 그 장단점을 논한다.