• 제목/요약/키워드: Dynamic condition

검색결과 2,791건 처리시간 0.03초

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

이동 하중의 질량효과를 고려한 보의 동적응답 (Dynamic Response of a Beam Including the Mass Effect of the Moving Loads)

  • 최교준;김용철
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.61-68
    • /
    • 1991
  • 본 연구에서는 스프링힌지, 클램프, 단순지지, 탄성지반, 다수의 병진 및 회 전스프링 그리고 중간지지점의 조합으로 구성되어 있는 보에 대하여 우선 Hamilton원 리에 의하여 정확한 보의 특성방정식을 유도하고 모든 경계조건을 만족하는 직교다항 식을 구한 후, 스프링, 댐퍼로 구성된 여러개의 질량이 일정한 속도로 이동할 경우에 대하여 Galerkin방법과 수치적분 방법을 사용하여 동적응답을 구하였다. 또한 구속 조건 및 경계조건이 변함에 따라 동적응답에 미치는 영향을 연구하였다.

편마비환자에게 플라스틱 단하지 보조기착용 전${\cdot}$후 선자세 균형과 동적 움직임에 미치는 효과 (The immediate effect standing balance and dynamic activity on barefoot, wearing SPAFO and wearing HPAFO in hemiplegic patients)

  • 임호용;박승규
    • The Journal of Korean Physical Therapy
    • /
    • 제17권1호
    • /
    • pp.96-107
    • /
    • 2005
  • Objective: The purpose of this study were to investigate the standing balance, dynamic activity in hemiplegic patients according to the types of ankle-foot orthosis(AFO) and to determine the most effective type of AFO for gait training. Method: A prospective study was performed for 16 patients with hemiplegia who was able to walk independently. Static balance and dynamic activity were compared in two condition : 1) barefoot and SPAFO, 2) barefoot and HPAFO. Static balance and dynamic activity characteristics were evaluated by Active Balance while they were standing with in two condition AFO and barefoot. Results: There were significant difference in standing balance between barefoot and wearing SPAFO and HPAFO(p<0.05). There were significant difference in dynamic activity balance between barefoot and wearing SPAFO and HPAFO(p<0.05). There were significant difference in gait speed between barefoot and wearing SPAFO and HPAFO(p<0.05). Conclusion: This study showed that wearing SPAFO and HPAFO gave fair amount of improvement to balance and gait ability of hemiplegic patients.

  • PDF

고속 공기 포일 베어링의 정적${\cdot}$동적 특성에 관한 실험적 연구 (An Experimental Study on the Static and Dynamic Characteristics of High Speed Air Foil Bearings)

  • 조준현;이용복;김창호;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.186-194
    • /
    • 2004
  • Experiments were conducted to determine the structural static and dynamic characteristics of air foil bearings. The housing of the bearing on the journal was driven by an impact hammer which was used to simulate dynamic forces acting on the bump loll with various leading condition. Two different bump foils (Cu-coated bump and viscoelastic bump) were tested and the static and dynamic coefficients of two bump foils compared, based on the experimental measurements for a wide range of operating conditions. The static and dynamic characteristics of air foil bearings were extracted 0rpm the frequency response function by least square method and IV(Instrumental Variable) method. The experiment was tested at 0rpm and $10,000\~16,000rpm$, and loaded on $50\~150N$. From the test results, the possibility of the application of high load and high speed condition is suggested.

  • PDF

Dynamic field monitoring data analysis of an ancient wooden building in seismic and operational environments

  • Lyu, Mengning;Zhu, Xinqun;Yang, Qingshan
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.1043-1060
    • /
    • 2016
  • The engineering background of this article is an ancient wooden building with extremely high historic and cultural values in Tibet. A full understanding of the dynamic behaviour of this historic building under in-service environments is the basis to assess the condition of the structure, especially its responses to earthquake, environmental and operational loading. A dynamic monitoring system has been installed in the building for over one year and the large amounts of high quality data have been obtained. The paper aims at studying the dynamic behaviour of the wooden building in seismic and operational conditions using the field monitoring data. Specifically the effects of earthquake and crowd loading on the structure's dynamic response are investigated. The monitoring data are decomposed into principal components using the Singular Spectrum Analysis (SSA) technique. The relationship between the average acceleration amplitude and frequencies of the principle components and operational conditions has been discussed. One main contribution is to understand the health condition of complex ancient building based on large databases collected on the field.

클러치 동적 토크 계측에 관한 연구 (A Study on Measuring Clutch Dynamic Torque)

  • 이성구;김동영;허만대
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.65-70
    • /
    • 2012
  • Torque fluctuation of engine generate gear rattle noise of transmission and many researches have been studied to decrease rattle noise by adjusting clutch damper system. So design optimization of clutch system is very important to decrease rattle noise and need knowing clutch dynamic torque at real vehicle driving condition. This makes it possible to measure clutch dynamic torque by using a small-size magnetic sensor. We install a small-size magnetic sensor on the input shaft of the transmission and measure the relative angular displacement between clutch hub and disc plate. We can obtain the clutch torque correspond to the angular displacement in the clutch torsional characteristics test. The object of this research is to measure clutch dynamic torque on real vehicle condition. Therefore, Clutch dynamic torque is very useful for investigating operating range of clutch according to engine torque and predicting the damping performance of torsional vibration on the powertrain.

Analytical Study of the Impact of the Mobility Node on the Multi-channel MAC Coordination Scheme of the IEEE 1609.4 Standard

  • Perdana, Doan;Cheng, Ray-Guang;Sari, Riri Fitri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.61-77
    • /
    • 2017
  • The most challenging issues in the multi-channel MAC of the IEEE 1609.4 standard is how to handle the dynamic vehicular traffic condition with a high mobility, dynamic topology, and a trajectory change. Therefore, dynamic channel coordination schemes between CCH and SCH are required to provide the proper bandwidth for CCH/SCH intervals and to improve the quality of service (QoS). In this paper, we use a Markov model to optimize the interval based on the dynamic vehicular traffic condition with high mobility nodes in the multi-channel MAC of the IEEE 1609.4 standard. We evaluate the performance of the three-dimensional Markov chain based on the Poisson distribution for the node distribution and velocity. We also evaluate the additive white Gaussian noise (AWGN) effect for the multi-channel MAC coordination scheme of the IEEE 1609.4 standard. The result of simulation proves that the performance of the dynamic channel coordination scheme is affected by the high node mobility and the AWGN. In this research, we evaluate the model analytically for the average delay on CCHs and SCHs and also the saturated throughput on SCHs.

전자 제어 CVT 차량의 변속제어전략 (Shift Control Strategy for Electric Controlled CVT Vehicle)

  • 김동우;김현수
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.85-97
    • /
    • 2000
  • In this paper, static and dynamic shift control stategies of CVT speed ratio are suggested. For the static shift control, in order to operate engine on the optimal operating region, a fuzzy control logic is used. In the fuzzy logic, S- factor that is defined as a degree of sportiness is introduced. Simulation results show that the static shift control strategy based on the fuzzy logic selects the optimal operating point automatically between the economy and the sporty mode corresponding to the driver's desire and the driving condition. For the dynamic shift control strategy, a shift speed map is suggested which determines the shift sped as fast or slow based on Δi, the difference between the desired speed ratio id and the actual speed ratio i, and throttle opening. It is seen from the simulation results that the CVT shift speed is determined by the dynamic shift control strategy to provide appropriate performance and comfort for the driver's demand and driving condition. Additionally, experiments are performed to investigate the dynamic performance of the shift speed for the lift foot up. From the experimental results, it is found that improved shift feeling can be obtained by the dynamic shift control strategy when lift foot up occurs.

  • PDF

Verification and improvement of dynamic motion model in MARS for marine reactor thermal-hydraulic analysis under ocean condition

  • Beom, Hee-Kwan;Kim, Geon-Woo;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1231-1240
    • /
    • 2019
  • Unlike land-based nuclear power plants, a marine or floating reactor is affected by external forces due to ocean conditions. These external forces can cause additional accelerations and affect each system and equipment of the marine reactor. Therefore, in designing a marine reactor and evaluating its performance and stability, a thermal hydraulic safety analysis code is necessary to consider the thermal hydrodynamic effects of ship motion. MARS, which is a reactor system analysis code, includes a dynamic motion model that can simulate the thermal-hydraulic phenomena under three-dimensional motion by calculating the body force term included in the momentum equation. In this study, it was verified that the dynamic motion model can simulate fluid motion with reasonable accuracy using conceptual problems. In addition, two modifications were made to the dynamic motion model; first, a user-supplied table to simulate a realistic ship motion was implemented, and second, the flow regime map determination algorithm was improved by calculating the volume inclination information at every time step if the dynamic motion model was activated. With these modifications, MARS could simulate the thermal-hydraulic phenomena under ocean motion more realistically.

A Flexible Multi-body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

  • Moon Il-Dong;Yoon Ho-Sang;Oh Chae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1638-1645
    • /
    • 2006
  • This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of $1{\sim}2mm/sec$ and frequency of 132 mm. First, the simulation is conducted with the same condition as the test. Then, the simulations are conducted with various amplitudes in a loaded state. The hysteretic diagram from the test is compared with the ones from the simulation for the validation of the reliability of the model. The dynamic stress analysis of the taper leaf spring is also conducted with the developed flexible multi-body dynamic model under a dynamic loading condition.