• Title/Summary/Keyword: Dynamic condensation method

Search Result 53, Processing Time 0.021 seconds

Processing of Tin Oxide Nanoparticles by Inert Gas Condensation Method and Characterization

  • Simchi, Abdolreza;Kohi, Payam
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.122-123
    • /
    • 2006
  • Tin oxide nanoparticles (n-SnO and $n-SnO_2$) were synthesized by the inert gas condensation (IGC) method under dynamic gas flow of oxygen and argon at various conditions. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) method were used to analysis the size, shape and crystal structure of the produced powders. The synthesized particles were mostly amorphous and their size increased with increasing the partial pressure of oxygen in the processing chamber. The particles also became broader in size when higher oxygen pressures were applied. Low temperature annealing at $320^{\circ}C$ in air resulted to crystallization of the amorphous n-SnO particles to $SnO_2$.

  • PDF

Study on the efficient dynamic system condensation (동적 해석의 효율적 축소 기법에 관한 연구)

  • Baek, Sung-Min;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.631-636
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the, we proposed a two-level condensation scheme(TLCS) for the construction of a reduced system. In first step, the of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation, and next, the primary degrees of freedom is selected by sequential elimination from the degrees of freedom connected the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system(IIRS) to increase accuracy of higher modes intermediate range. Also, it possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Numerical examples demonstrate performance of proposed method.

  • PDF

Study on the Dynamic Analysis Based on the Reduced System (축소모델 기반 구조물의 동적해석 연구)

  • Kim, Hyung-Gi;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.439-450
    • /
    • 2008
  • In this study, the reduced system for the dynamic analysis is proposed and the selection criterion of the primary degrees of freedom is presented considering the relation between natural frequency and external loading frequency. A well-constructed reduced system can assure the accurate representation of the dynamic behavior under arbitrary dynamic loads. For selecting the primary degrees of freedom of the reduced system, we employ the robust two-level condensation scheme of which the reliability has been proven through previous study. In the numerical examples, the reliability of the dynamic analysis based on the reduced system is demonstrated through comparing with those of global system.

Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (I) - Undamped Structural Systems - (부구조화 기법을 연동한 반복적인 동적 축소법 (I) - 비감쇠 구조 시스템 -)

  • Choi, Dong-Soo;Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.211-220
    • /
    • 2007
  • This work presents an iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for large structures. Iterated IRS methods are usually more efficient than others because the dynamic condensation matrix is updated repeatedly until the desired convergent values are obtained. However, using these methods simply for large structures causes expensive computational cost and even makes analyses intractable because of the limited computer storage. Therefore, the application of sub-structuring scheme is necessary. Because the large structures are subdivided into several (or more) sub-domains, the construction of dynamic condensation matrix does not require much computation cost in every iteration. This makes the present method much more efficient to compute the eigenpairs both in lower and intermediate modes. In Part I, iterated IRS method combined with sub-structuring scheme for undamped structures is presented. The validation of the proposed method and the evaluation of computational efficiency are demonstrated through the numerical examples.

Efficient Local Vibration Analysis of Large Steel Frames (대형철골구조물의 효율적인 국부진동해석)

  • 이동근;송종걸;정길영;김우범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.105-112
    • /
    • 1994
  • In a local vibration analysis of a large steel frame, a large eigenvalue problem results. Due to computer storage and the expense of a complete solution, it is desirable to minimize the size of the resulting matrices. A new and efficient method of local vibration analysis for large steel frames is presented. It reduces the order of dynamic matrices by dynamic condensation method. Examples are given for local vibration of a plane frame. Results are compared to the complete solution of the full eigenvalue problem.

  • PDF

Dynamic Analysis of the Cracked Timoshenko Beam under a Moving Mass using Finite Element Method (유한요소법을 이용한 이동질량 하에 크랙을 갖는 티모센코 보의 동특성 연구)

  • Kang Hwan-Jun;Lee Shi-Bok;Hong Keum-Shik;Jeon Seung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.271-276
    • /
    • 2004
  • In this paper. dynamic behavior of the cracked beam under a moving mass is presented using the finite element method (FEM). Model accuracy is improved with the following consideration: (1) FE model with Timoshenko beam element (2) Additional flexibility matrix due to crack presence (3) Interaction forces between the moving mass and supported beam. The Timoshenko bean model with a two-node finite element is constructed based on Guyan condensation that leads to the results of classical formulations. but in a simple and systematic manner. The cracked section is represented by local flexibility matrix connecting two unchanged beam segments and the crack as modeled a massless rotational spring. The inertia force due to the moving mass is also involved with gravity force equivalent to a moving load. The numerical tests for various mass levels. crack sizes. locations and boundary conditions were performed.

  • PDF

Transformation of Dynamic Loads into Equivalent Static Loads by the Selection Scheme of Primary Degrees of Freedom (주자유도 선정 기법에 의한 동하중의 등가 정하중으로의 변환)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1316-1321
    • /
    • 2003
  • The systematic method to construct equivalent static load from the given dynamic load is proposed in the present study. Previously reported works to construct equivalent static load were based on ad hoc methods. They may results in unreliable structural design. The present study proposes a selection scheme of degrees of freedom(d.o.f) for imposing the equivalent static loads. The d.o.fs are selected by Two-level condensation scheme(TLCS). TLCS consists of two two-steps. The first step is the energy estimation in element-level and the second step consists of the traditional sequential elimination precudure. Through several numerical examples, the efficiency and reliability of proposed scheme is verified.

  • PDF

Efficient Analysis Models for Vertical Vibration of Space Framed Structures (3차원 골조구조물의 효율적인 연직진동해석)

  • 안상경;홍성일;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.78-85
    • /
    • 1996
  • The effect of vertical vibration of a beam is significantly influenced by higher modes of vibration. Therefore, a beam can be modeled using several elements must De used to represent a vibrating beam. As a result, analysis of a space framed structure for vertical vibration requires increase number of elements leading to more complicated model with many degree of freedom which requires large amount of computing resources for dynamic analysis. An efficient analysis method for vertical vibration of space framed structures are proposed in this paper which is presented in three method. The first method is to determine minimum nodes that shall be used to obtain dynamic response with the vertical vibration. Secondly, matrix condensation methods are introduced to reduce the computation efforts used to perform dynamic analysis and the selection of primary degree-of-freedom is proposed. The third method is of using the mass participation factor for the selection of primary degree-of-freedom.

  • PDF

Economical Dynamic Analysis of Grid Structures (격자항(格子桁) 구조물(構造物)의 경제적(經濟的)인 동적(動的) 해석(解析)에 관한 연구(研究))

  • Choi, Gil Hyun;Lee, Dong Guen;Chung, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.33-42
    • /
    • 1987
  • Grid structures are extensively used in bridge and slab strucures. When the elements are assembled for the entire structure the number of degree of freedom may be very large and thus, the stiffness, mass, and damping matrices become of large dimension. Undoubtedly, determining natural frequencies and mode shapes of such structures are complicated and require large computer costs. For these reasons various eigenvalue economizer procedures have been developed, which serve to reduce the number of degree of freedom. This paper proposes an economic method of dynamic analysis of grid stuctures using static and dynamic condensation techniques. The accuracy and economy of this method are investigated by comparing some results of model analysis of N-degree of freedom. It has been shown that the method achieves remarkable economy at only a little cost of accuracy.

  • PDF

Efficient Analysis of Building Structures with a Rigid Floor System (주상복합건물의 효율적인 지진해석)

  • 황현식;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.79-88
    • /
    • 1997
  • Very stiff floor system in a residential-commercial building causes some problems in the numerical analysis procedure due to significant difference in stiffness with adjacent elements. Static analysis of structure with a stiff transfer-floor can be performed approximately in two steps for upper and lower parts for the structure. However, it is impossible to perform dynamic analysis in two steps with separate models. An efficient method for dynamic analysis of a structure with a right floor system is proposd in this study. The matrix condensation technique is employed to reduce the degree of freedom for upper and lower parts of the structure and a beam elements with rigid bodies at both ends are introduce to model the rigid floor system. Efficiency and accuracy of the proposed method are verified through analysis of several example structures.

  • PDF