• Title/Summary/Keyword: Dynamic coefficient

Search Result 1,299, Processing Time 0.026 seconds

Braking Characteristics of Friction Disk made of Carbon Paper for Wet-type Multiple Disk Brakes of Crane Turning Decelerator (크레인 선회감속기의 습식 다판 브레이크를 위한 카본 페이퍼 마찰 디스크의 제동 특성)

  • Cho, Yonsang;Bae, Myongho
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.112-116
    • /
    • 2012
  • wet-type multiple disk brakes are very important parts of turning decelerator for deck crane, because they are advanced in durability and braking power, and can be designed compactly. Thus, we designed and made wet-type multiple disk brakes of turning decelerator for deck crane to be localization of these imported all. In this study, wet multiple disk brakes were made a comparative test with the 2 types materials of friction disk by the SAE No.2 dynamometer. The friction characteristics were measured and analyzed to decide a suitable material as wear depth of friction disk and dynamic and static friction coefficient.

Braking Characteristics of Wet-type Multiple Disc Brakes on Friction Materials (마찰재에 따른 휠굴삭기용 습식 다판 디스크 브레이크의 제동특성)

  • Bae, Myung-Ho;Cho, Yon-Sang
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.381-386
    • /
    • 2009
  • In general, a brake system of axle for heavy duty machine as a wheel excavator makes use of wettype multiple disk brakes. These disk bakes are very important parts of heavy duty machine because they are dvanced in durability and braking power, and can be designed compactly. Thus, we adesigned and made wettype multiple disk brakes of axle for the wheel excavator to be localization of these imported all. In this study, wet multiple disk brakes were made a comparative test with the 3 types materials of friction disk by the SAE No.2 dynamometer. The friction characteristics were measured and analyzed to decide a suitable material as wear depth of friction disk and dynamic and static friction coefficient on temperature of oil and applied pressure.

A Study on the Five - hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • Jeong, Yang Beom;Sin, Yeong Ho;Park, Ho Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

A Study on the Five-hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.48-56
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw abd total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

  • PDF

Longitudinal and Flexural Vibration Analysis of a Beam Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 보형구조물의 종.굽힘진동해석)

  • Moon, D.H.;Choi, M.S.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The authors have studied vibration analysis algorithm which was suitable to the personal computer. Recently, we presented the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficients which are related to force and displacement vectors at each node. In this paper, we describes the general formulation for the longitudinal and flexural coupled vibration analysis of a beam type structure by the TSCM. And the superiority of the TSCM to the finite element method(FEM) in the computation accuracy, cost and convenience was confirmed by results of the numerical computation and experiment.

  • PDF

Analysis of Harmonic Vibration of Cracked Rotor (균열회전체의 고조파진동 해석)

  • Jun, Oh-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.35-46
    • /
    • 2008
  • Harmonic vibration characteristics for the general rotor model having a breathing crack are analyzed. Analyses are performed at the half critical speed ranges. The vibration characteristics are explained by using the additional slope and bending moment at the crack position and the influence coefficient showing the structural dynamic characteristics of the rotor. With the low crack depth the magnitude of the additional slope is kept constant even at the speed range at which the orbit magnitude is very sensitive to the rotational speed change. At this speed range the vibration is affected by the influence coefficient only. As the dynamic bending moment exceeds the static bending moment with the increase of crack depth. the additional slope affects the vibration amplitude of cracked rotor and the crack propagation rate increases.

Empirical formulations for evaluation of across-wind dynamic loads on rectangular tall buildings

  • Ha, Young-Cheol
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.603-616
    • /
    • 2013
  • This study is aimed at formulating an empirical equation for the across-wind fluctuating moment and spectral density coefficient, which are needed to estimate the across-wind dynamic responses of tall buildings, as a function of the side ratios of buildings. In order to estimate an empirical formula, wind tunnel tests were conducted on aero-elastic models of the rectangular prisms with various aspect and side ratios in turbulent boundary layer flows. In this paper, criteria for the across-wind fluctuating moment and spectral density are briefly discussed and the results are analyzed mainly as a function of the side ratios of the buildings. Finally, empirical formulas for the across-wind fluctuating moment coefficient and spectral density coefficient according to variation of the aspect ratio are proposed.

The role of wall configuration and reinforcement type in selecting the pseudo-static coefficients for reinforced soil walls

  • Majid Yazdandoust;Amirhossein Rasouli Jamnani;Mohsen Sabermahani
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.555-570
    • /
    • 2023
  • In the current study, a series of experimental and analytical evaluations were performed to introduce the horizontal pseudo static coefficient (kh) as a function of the wall configuration and the reinforcement type for analyzing reinforced soil walls. For this purpose, eight shaking table tests were performed on reduced-scale models of integrated and two-tiered walls reinforced by metal strip and geogrid to determine the distribution of dynamic lateral pressure in the walls. Then, the physical models were analyzed using Mononobe-Okabe method to estimate the value of kh required to establish the dynamic lateral pressures similar to those observed in shaking table tests. Based on the results, the horizontal pseudo static coefficient and the position of resultant lateral force (R) were introduced as a function of the horizontal peak ground acceleration (HPGA), the wall configuration, the reinforcement type as well as maximum wall displacement.

Non-linear incidental dynamics of frame structures

  • Radoicic, Goran N.;Jovanovic, Miomir Lj.;Marinkovic, Dragan Z.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1193-1208
    • /
    • 2014
  • A simulation of failures on responsible elements is only one form of the extreme structural behavior analysis. By understanding the dynamic behavior in incidental situations, it is possible to make a special structural design from the point of the largest axial force, stress and redundancy. The numerical realization of one such simulation analysis was performed using FEM in this paper. The boundary parameters of transient analysis, such as overall structural damping coefficient, load accelerations, time of load fall and internal forces in the responsible structural elements, were determined on the basis of the dynamic experimental parameters. The structure eigenfrequencies were determined in modal analysis. In the study, the basic incidental models were set. The models were identified by many years of monitoring incidental situations and the most frequent human errors in work with heavy structures. The combined load models of structure are defined in the paper since the incidents simply arise as consequences of cumulative errors and failures. A feature of a combined model is that the single incident causes the next incident (consecutive timing) as well as that other simple dynamic actions are simultaneous. The structure was observed in three typical load positions taken from the crane passport (range-load). The obtained dynamic responses indicate the degree of structural sensitivity depending on the character of incident. The dynamic coefficient KD was adopted as a parameter for the evaluation of structural sensitivity.

Experimental Study of the Dynamic Characteristics of Rubber Mounts for Agricultural Tractor Cabin

  • Choi, Kyujeong;Oh, Jooseon;Ahn, Davin;Park, Young-Jun;Park, Sung-Un;Kim, Heung-Sub
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.255-262
    • /
    • 2018
  • Purpose: To obtain the dynamic characteristics (spring stiffness and damping coefficient) of a rubber mount supporting a tractor cabin in order to develop a simulation model of an agricultural tractor. Methods: The KS M 6604 rubber mount test method was used to test the dynamic characteristics of the rubber mount. Of the methods proposed in the standard, the resonance method was used. To perform the test according to the standard, a base excitation test device was constructed and the accelerations were measured. Results: Displacement transmissibility was measured by varying the frequency from 3-30 Hz. The vibration transmissibility at resonance was confirmed, and the dynamic stiffness and damping coefficient of the rubber mount were obtained. The front rubber mount has a spring constant of 1247 N/mm and damping ratio of 3.27 Ns/mm, and the rear rubber mount has a spring constant of 702 N/mm and damping ratio of 1.92 Ns/mm. Conclusions: The parameters in the z-direction were obtained in this study. In future studies, we will develop a more complete tractor simulation model if the parameters for the x- and y-directions can be obtained.