• Title/Summary/Keyword: Dynamic cipher

Search Result 15, Processing Time 0.02 seconds

Dynamic Allocation Algorithm for enhancement of transmission performance on a radio encryption system (무선암호시스템에서 전송성능 개선을 위한 동적할당 알고리듬)

  • 홍진근;윤장홍;장병화;황찬식
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • In this paper, a synchronized stream encryption system for secure link layer communication in a radio channel is designed. Interleaving scheme which is used to enhance the transmission performance over a fading channel is applied to the encrypted information. A designed synchronous scream cipher system consists of a keystream generator, a synchronization pattern generator and a session key generator. The structure of a synchronous stream cipher system with periodic synchronization is composed of the encrypted information which consists of a synchronization pattern, an error correcting coded session key, an encrypted data in a period of synchronization. In this paper, interleaving scheme using dynamic allocation a1gorithm(DAA) is applied the encrypted information. The BER of the DAA has been slightly higher than that of the SAA(static allocation algorithm).

Synchronization of Chaotic Secure Communication Systems with Interval Time-varying Delays (구간 시변 지연이 존재하는 카오스 보안 통신시스템의 동기화)

  • Kwon, Oh-Min;Park, Ju-Hyun;Lee, Sang-Moon;Park, Myeong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1215-1222
    • /
    • 2009
  • In this paper, a method of designing a controller which ensures the synchronization between the transmission and the reception ends of chaotic secure communication systems with interval time-varying delays is proposed. To increase communication security, the transmitted message is encrypted with the techniques of N-shift cipher and public key. And to reduce the conservatism of the stabilization criterion for error dynamic system obtained from the transmitter and receiver, a new Lyapunov-functional and bounding technique are proposed. Through a numerical example, the effectiveness of the proposed method is shown in the chaotic secure communication system.

Design and Implementation of the Security Components in Ultra-Lightweight Mobile Computing Environment (초경량 이동 컴퓨팅 환경에서의 보안 컴포넌트 설계 및 구현)

  • Park, Rae-Young;You, Yong-Duck;Lee, Young-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.454-461
    • /
    • 2007
  • The next-generation computer is the ultra-lightweight mobile computer that communicates with peripheral handhold devices and provides dynamically the services appropriate to user. To provide the dynamic services on the ultra-lightweight mobile computer, security problem for user or computer system information should be solved and security mechanism is necessary for the ultra-lightweight mobile computing environment that has battery limit and low performance. In this paper, the security mechanism on the component based middleware for the ultra-lightweight mobile computer was implemented using RC-5 cipher algorithm and SHA-1 authentication algorithm. The security components are dynamically loaded and executed into the component based middleware on the ultra-lightweight mobile computer.

A Study of a Secure Smart Car System using Attribute-based Delegation Method (속성 기반 권한위임 관리 기법을 사용한 스마트 자동차 안전성 검토에 관한 연구)

  • Kim, Jin-Mook;Moon, Jeong-Kyung;Hwang, Deuk-Young
    • Convergence Security Journal
    • /
    • v.19 no.3
    • /
    • pp.71-79
    • /
    • 2019
  • The demand of smart cars is increasing rapidly. International stand organize such as 3GPP and 5GAA are proposing standard communication protocvols for connected-car, and automotive network infrastructure. But Smart car network have many security threats and more dangerous against the existed wire communication network. Typically, peripheral devices of a smart car may disguise their identity and steal location information and personal information about the vehicle. In addition, the infrastructure elements around smart cars can conspire and put driving cars in danger, threatening lives. This is a very serious security threat. Therefore, in order to solve these problems, we proposed a system that is secure from collusion and tampering attacks using attribute-based authorize delegation method and threshold encryption algorithms. We have demonstrated using a semantic safety model that the proposed system can be safe from collusion attack.

Low Power Implementation of Integrated Cryptographic Engine for Smart Cards (스마트카드 적용을 위한 저전력 통합 암호화 엔진의 설계)

  • Kim, Yong-Hee;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.80-88
    • /
    • 2008
  • In this paper, the block cipher algorithms, 3-DES(Triple Data Encryption Standard), AES(Advanced Encryption Standard), SEED, HASH(SHA-1), which are domestic and international standards, have been implemented as an integrated cryptographic engine for smart card applications. For small area and low power design which are essential requirements for portable devices, arithmetic resources are shared for iteration steps in each algorithm, and a two-level clock gating technique was used to reduce the dynamic power consumption. The integrated cryptographic engine was verified with ALTERA Excalbur EPXA10F1020C device, requiring 7,729 LEs(Logic Elements) and 512 Bytes ROM, and its maximum clock speed was 24.83 MHz. When designed by using Samsung 0.18 um STD130 standard cell library, the engine consisted of 44,452 gates and had up to 50 MHz operation clock speed. It was estimated to consume 2.96 mW, 3.03 mW, 2.63 mW, 7.06 mW power at 3-DES, AES, SEED, SHA-1 modes respectively when operating at 25 MHz clock. We found that it has better area-power optimized structure than other existing designs for smart cards and various embedded security systems.