• Title/Summary/Keyword: Dynamic behavior experiment

Search Result 216, Processing Time 0.026 seconds

Estimation of sound radiation for a flat plate by using BEM and vibration experiment (경계요소 해석과 진동 실험을 이용한 단순 평판의 방사 음향 예측)

  • 김관주;김정태;최승권
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.843-848
    • /
    • 2000
  • BEA(Boundary Element Analysis) based on Kirchhoff-Helmholtz integral equation is widely used in the prediction of sound radiation problems of vibrating structures. Accurate estimation of sound pressure distribution by BEA can be [possible if and only if dynamic behavior of the relating structure was described correctly. Another plausible method of sound radiation phenomena could be the NAH(Nearfield Acoustic Holography) method. NAH also based on the identical governing equation with BEA could be one of the best acoustic imaging schemes but it has disadvantages of the complexity of measurement and of the need of large amount of measuring points. In this paper, modal expansion method is presented for taking accurate dynamic data of the structures efficiently. This method makes use of vibration principle an arbitrary dynamic behavior of the structure is described by the summation of that structures mode shapes which can be calculated by FEA easily and accurately. Sound pressure field from a vibration flat plate is calculated using the combination of vibration signal on that flat plate from experiment, and of the natural mode shapes form FEA. When sound pressure field from vibration signal is calculated the importance of the phase information was emphasized.

  • PDF

Experimental Analysis Method of the Dynamic Behavior of Buoys in Extreme Environment (극한 환경하의 부표 운동성능 모형시험기법 개발)

  • 홍기용;양찬규;최학선
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.208-215
    • /
    • 2001
  • An experimental method to investigate the dynamic charasteristics of buoys in extreme environmental condition is established. Because the buoy model requires a resonable size for accurate experiment, the test condition in model basin that satisfies the similarity law is hardly met with capability of test facilities. It is suggested that the linear wave component that is unable to satisy similarity is separated with others. The model experiment can be carried out with mitigated condition for the linear wave components while others including wave drift, current and wind are keeping the similarities. Then the result is extrapolated to give the dynamic behavior of buoys in extreme condition because linear wave component is soley responsible to oscillatory buoy motion and other environmental components are applied as a initial tension. the similarity for current and wind conditions is viewed as equivalence of restoring forces. the validity of proposed method is examined with different types of standard ocean buoys and it indicates that the linearity of measured characteristics is assured with a limitation of resonable distance between test and estimated wave conditions.

  • PDF

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios

  • Haido, James H.;Abdul-Razzak, Ayad A.;Al-Tayeb, Mustafa M.;Bakar, B.H. Abu;Yousif, Salim T.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.89-98
    • /
    • 2021
  • Investigations on the dynamic behavior of concrete members, incorporating steel fibers with different aspect ratios, are limited so far and do not covered comprehensively in prior studies. Present endeavor is devoted to examine the dynamic response of the steel fibrous concrete beams and slabs under the influence of impact loading. These members were reinforced with steel fibers in different length of 25 mm and 50 mm. Four concrete mixes were designed and used based on the proportion of long and short fibers. Twenty-four slabs and beams were fabricated with respect to the concrete mix and these specimens were tested in impact load experiment. Testing observations revealed that the maximum dynamic deflection or ductility of the member can be achieved with increasing the fiber length. Structural behavior of the tested structures was predicted using nonlinear finite element analysis with specific material constitutive relationships. Eight nodes plate elements have been considered in the present dynamic analysis. Dynamic fracture energy of the members was calculated and agreement ratio, of more than 70%, was noticed between the experimental and analysis outcomes.

A Study on the Model Updating Procedures Using Modal Frequencies (모드 주파수를 이용한 모델 개선 과정에 대한 연구)

  • Jang, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • It is important to make a mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In finite element analysis model updating is appropriate as the design parameter is used to analyze the dynamic system. The errors can be contained from the physical parameters and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. In this paper, model updating algorithm is developed using frequency difference between experiment and calculation. Modal frequencies are obtained by experiment and finite element analysis for beams with various cross section and shapes which have added masses and holes in the middle. For plates with and without groove, experiment and analyses are carried out by applying free boundary conditions as well. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies in case that both matrices are updated. An improved analytical model is obtained by changing model parameters such that the discrepancy between test and finite element frequencies is minimized. For beam and plate models updating of mass and stiffness matrices can improve the dynamical behavior of the model by acting on the physical parameters such as masses and stiffness.

Verification of the Theoretical Model for Analyzing Dynamic Behavior of the PIG from Actual Pigging

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Park, Yong-Woo;Yoo, Hui-Ryong;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1349-1357
    • /
    • 2003
  • This paper deals with verification of the theoretical model for dynamic behavior of Pipeline Inspection Gauge (PIG) traveling through high pressure natural gas pipeline. The dynamic behavior of the PIG depends on the differential pressure across its body. This differential pressure is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze the dynamic behavior characteristics such as gas flow in pipeline, and the PIG position and velocity, not only the mathematical models are derived, but also the theoretical models must be certified by actual pigging experiment. But there is not any found results of research on the experimental certification for dynamic behavior of the PIG. The reason is why the fabrication of the PIG as well as, a field application are very difficult. In this research, the effectiveness of the introduced solution using the method of characteristics (MOC) was certified through field application. In-line inspection tool, 30" geometry PIG, was fabricated and actual pigging was carried out at the pipeline segment in Korea Gas Corporation (KOGAS) high pressure system, Incheon LT (LNG Terminal) -Namdong GS (Governor Station) line. Pigging is fulfilled successfully. Comparison of simulation results with experimental results show that the derived mathematical models and the proposed computational schemes are effective for predicting the position and velocity of the PIG with a given operational conditions of pipeline.

Prediction of the Behavior of dynamic Recrystallization in Inconel 718 during Hot Forging using Finite Element Method (유한요소법을 이용한 Inconel 718의 열간단조공정시 동적재결정거동 예측)

  • Choi, Min-Shik;Kang, Beom-Soo;Yum, Jong-Taek;Park, Noh-Kwang
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.197-206
    • /
    • 1998
  • This paper presents the prediction of dynamic recrystallization behavior during hot forging of Inconel 718. Another experiment of pancake forging was also carried out to examine the recrystallization ration dynamically recrystallizaed grain size, and grain growth in the forging. In experiments cylindrical billets were forged by two operations with variations of forging temperature, reduction ration of deformation. and preheating process at each forging step. Also the finite element program, developed here for the prediction using the metallurgical models was used for the analysis of to Inconel 718 upsetting and the results were compared with experimental ones.

  • PDF

STRUCTURAL INTEGRITY EVALUATION OF NUCLEAR FUEL WITH REDUCED WELDING CONDITIONS

  • Park, Nam-Gyu;Park, Joon-Kyoo;Suh, Jung-Min;Kim, Kyu-Tae;Jeon, Kyeong-Lak
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.347-354
    • /
    • 2009
  • Welding is required for a connection between two different components in the nuclear fuel of a pressurized water reactor. This work relies on a mechanical experiment and analytic results to investigate the structural integrity of nuclear fuel in a situation where some components are not welded to each other. A series of lateral vibration tests are performed in a test facility, and the test structures are examined in terms of dynamic behavior. In the tests, the displacement signal at every grid structure that sustains fuel rods is measured and processed to identify the dynamic properties. The fluid-elastic stability of the structure is also analyzed to evaluate susceptibility to a cross flow with an assumed conservative cross flow distribution. The test and analysis results confirm that the structural integrity can be maintained even in the absence of some welding connections.

Evaluation of the effect of rubble mound on pile through dynamic centrifuge model tests

  • Jungwon Yun;Jintae Han
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.415-425
    • /
    • 2023
  • Pile-supported wharves, port structures that support the upper deck, are installed on sloping ground. The sloping ground should be covered with a rubble mound or artificial blocks to protect the interior material from erosion caused by wave force. The behavior of the pile may vary during an earthquake if a rubble mound is installed on the slope. However, studies evaluating the effect of rubble mound on the pile during an earthquake are limited. Here, we performed dynamic centrifuge model tests to evaluate the dynamic behavior of piles installed in a slope reinforced with rubble mound. In the structure, some sections (single-pile, 2×2 group-pile) were selected for the experiment. The moment of the group-pile decreased by up to 26% upon installation of the rubble mound, whereas the moment of the single-pile increased by up to 41%, thus demonstrating conflicting results.

The Simulation and Experiment of Flexible Media with High Exit Velocity (고속의 출구속도를 가지는 유연매체의 거동해석 및 실험)

  • Hong, Sung-Kwon;Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.380-383
    • /
    • 2006
  • The media transport system is used in a printer, a ATM(Automated Tellor Machine), and so on. The media transport system has many problems through miniaturization and rapid transportation of these machines. In the paper feeding mechanism, it is important to feed the sheet without jamming under any conditions. To avoid sheet jamming, first we need to predict the behavior of the sheet exactly. In this paper, the analysis of media behavior is based on J. Stolte's studies. In all of OA machines, a flexible beam or plate is pushed from the channel. The motion may be constrained by guides. This leads to a transient and geometrically nonlinear problem. The behavior of paper is simulated by dynamic elastica theory. The shape of guide is represented by parametric cubic curve. But J. Stolte's studies did not considered contact condition between sheet and guide. So Klarbring's Model. will be applied. And the analysis of flexible media has to include aerodynamic effect for more exact behavior analysis, because the flexible media can be deformed drastically by a little force. Therefore aerodynamic force must be applied to the governing equation. Lastly, the simulation of this model is performed, and the experiment is performed for verification of this model. The experimental results of low exit velocity are consistent with the simulation results, however experimental results of high exit velocity do not agree well with analytical results. The reason is that there may be other effects like nip Phenomena

  • PDF