• Title/Summary/Keyword: Dynamic VM Migration

Search Result 14, Processing Time 0.022 seconds

NDynamic Framework for Secure VM Migration over Cloud Computing

  • Rathod, Suresh B.;Reddy, V. Krishna
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.476-490
    • /
    • 2017
  • In the centralized cloud controlled environment, the decision-making and monitoring play crucial role where in the host controller (HC) manages the resources across hosts in data center (DC). HC does virtual machine (VM) and physical hosts management. The VM management includes VM creation, monitoring, and migration. If HC down, the services hosted by various hosts in DC can't be accessed outside the DC. Decentralized VM management avoids centralized failure by considering one of the hosts from DC as HC that helps in maintaining DC in running state. Each host in DC has many VM's with the threshold limit beyond which it can't provide service. To maintain threshold, the host's in DC does VM migration across various hosts. The data in migration is in the form of plaintext, the intruder can analyze packet movement and can control hosts traffic. The incorporation of security mechanism on hosts in DC helps protecting data in migration. This paper discusses an approach for dynamic HC selection, VM selection and secure VM migration over cloud environment.

VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud Computing Environment

  • Supreeth, S.;Patil, Kirankumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1892-1912
    • /
    • 2022
  • With the massive demand and growth of cloud computing, virtualization plays an important role in providing services to end-users efficiently. However, with the increase in services over Cloud Computing, it is becoming more challenging to manage and run multiple Virtual Machines (VMs) in Cloud Computing because of excessive power consumption. It is thus important to overcome these challenges by adopting an efficient technique to manage and monitor the status of VMs in a cloud environment. Reduction of power/energy consumption can be done by managing VMs more effectively in the datacenters of the cloud environment by switching between the active and inactive states of a VM. As a result, energy consumption reduces carbon emissions, leading to green cloud computing. The proposed Efficient Dynamic VM Scheduling approach minimizes Service Level Agreement (SLA) violations and manages VM migration by lowering the energy consumption effectively along with the balanced load. In the proposed work, VM Scheduling for Efficient Dynamically Migrated VM (VMS-EDMVM) approach first detects the over-utilized host using the Modified Weighted Linear Regression (MWLR) algorithm and along with the dynamic utilization model for an underutilized host. Maximum Power Reduction and Reduced Time (MPRRT) approach has been developed for the VM selection followed by a two-phase Best-Fit CPU, BW (BFCB) VM Scheduling mechanism which is simulated in CloudSim based on the adaptive utilization threshold base. The proposed work achieved a Power consumption of 108.45 kWh, and the total SLA violation was 0.1%. The VM migration count was reduced to 2,202 times, revealing better performance as compared to other methods mentioned in this paper.

A Dynamic Task Distribution approach using Clustering of Data Centers and Virtual Machine Migration in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 데이터센터 클러스터링과 가상기계 이주를 이용한 동적 태스크 분배방법)

  • Mateo, John Cristopher A.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.103-111
    • /
    • 2016
  • Offloading tasks from mobile devices to available cloud servers were improved since the introduction of the cloudlet. With the implementation of dynamic offloading algorithms, mobile devices can choose the appropriate server for the set of tasks. However, current task distribution approaches do not consider the number of VM, which can be a critical factor in the decision making. This paper proposes a dynamic task distribution on clustered data centers. A proportional VM migration approach is also proposed, where it migrates virtual machines to the cloud servers proportionally according to their allocated CPU, in order to prevent overloading of resources in servers. Moreover, we included the resource capacity of each data center in terms of the maximum CPU in order to improve the migration approach in cloud servers. Simulation results show that the proposed mechanism for task distribution greatly improves the overall performance of the system.

Performance and Energy Oriented Resource Provisioning in Cloud Systems Based on Dynamic Thresholds and Host Reputation (클라우드 시스템에서 동적 임계치와 호스트 평판도를 기반으로 한 성능 및 에너지 중심 자원 프로비저닝)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.39-48
    • /
    • 2013
  • A cloud system has to deal with highly variable workloads resulting from dynamic usage patterns in order to keep the QoS within the predefined SLA. Aside from the aspects regarding services, another emerging concern is to keep the energy consumption at a minimum. This requires the cloud providers to consider energy and performance trade-off when allocating virtualized resources in cloud data centers. In this paper, we propose a resource provisioning approach based on dynamic thresholds to detect the workload level of the host machines. The VM selection policy uses utilization data to choose a VM for migration, while the VM allocation policy designates VMs to a host based on its service reputation. We evaluated our work through simulations and results show that our work outperforms non-power aware methods that don't support migration as well as those based on static thresholds and random selection policy.

A Quantitative Approach to Minimize Energy Consumption in Cloud Data Centres using VM Consolidation Algorithm

  • M. Hema;S. KanagaSubaRaja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.312-334
    • /
    • 2023
  • In large-scale computing, cloud computing plays an important role by sharing globally-distributed resources. The evolution of cloud has taken place in the development of data centers and numerous servers across the globe. But the cloud information centers incur huge operational costs, consume high electricity and emit tons of dioxides. It is possible for the cloud suppliers to leverage their resources and decrease the consumption of energy through various methods such as dynamic consolidation of Virtual Machines (VMs), by keeping idle nodes in sleep mode and mistreatment of live migration. But the performance may get affected in case of harsh consolidation of VMs. So, it is a desired trait to have associate degree energy-performance exchange without compromising the quality of service while at the same time reducing the power consumption. This research article details a number of novel algorithms that dynamically consolidate the VMs in cloud information centers. The primary objective of the study is to leverage the computing resources to its best and reduce the energy consumption way behind the Service Level Agreement (SLA)drawbacks relevant to CPU load, RAM capacity and information measure. The proposed VM consolidation Algorithm (PVMCA) is contained of four algorithms: over loaded host detection algorithm, VM selection algorithm, VM placement algorithm, and under loading host detection algorithm. PVMCA is dynamic because it uses dynamic thresholds instead of static thresholds values, which makes it suggestion for real, unpredictable workloads common in cloud data centers. Also, the Algorithms are adaptive because it inevitably adjusts its behavior based on the studies of historical data of host resource utilization for any application with diverse workload patterns. Finally, the proposed algorithm is online because the algorithms are achieved run time and make an action in response to each request. The proposed algorithms' efficiency was validated through different simulations of extensive nature. The output analysis depicts the projected algorithms scaled back the energy consumption up to some considerable level besides ensuring proper SLA. On the basis of the project algorithms, the energy consumption got reduced by 22% while there was an improvement observed in SLA up to 80% compared to other benchmark algorithms.

An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration

  • Ammar, Al-moalmi;Luo, Juan;Tang, Zhuo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4165-4187
    • /
    • 2016
  • As an emerging technology, cloud computing is a revolution in information technology that attracts significant attention from both public and private sectors. In this paper, we proposed a dynamic approach for live migration to obviate overloaded machines. This approach is applied on OpenStack, which rapidly grows in an open source cloud computing platform. We conducted a cost-aware dynamic live migration for virtual machines (VMs) at an appropriate time to obviate the violation of service level agreement (SLA) before it happens. We conducted a preemptive migration to offload physical machine (PM) before the overload situation depending on the predictive method. We have carried out a distributed model, a predictive method, and a dynamic threshold policy, which are efficient for the scalable environment as cloud computing. Experimental results have indicated that our model succeeded in avoiding the overload at a suitable time. The simulation results from our solution remarked the very efficient reduction of VM migrations and SLA violation, which could help cloud providers to deliver a good quality of service (QoS).

Adaptive VM Allocation and Migration Approach using Fuzzy Classification and Dynamic Threshold (퍼지 분류 및 동적 임계 값을 사용한 적응형 VM 할당 및 마이그레이션 방식)

  • Mateo, John Cristopher A.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.51-59
    • /
    • 2017
  • With the growth of Cloud computing, it is important to consider resource management techniques to minimize the overall costs of management. In cloud environments, each host's utilization and virtual machine's request based on user preferences are dynamic in nature. To solve this problem, efficient allocation method of virtual machines to hosts where the classification of virtual machines and hosts is undetermined should be studied. In reducing the number of active hosts to reduce energy consumption, thresholds can be implemented to migrate VMs to other hosts. By using Fuzzy logic in classifying resource requests of virtual machines and resource utilization of hosts, we proposed an adaptive VM allocation and migration approach. The allocation strategy classifies the VMs according to their resource request, then assigns it to the host with the lowest resource utilization. In migrating VMs from overutilized hosts, the resource utilization of each host was used to create an upper threshold. In selecting candidate VMs for migration, virtual machines that contributed to the high resource utilization in the host were chosen to be migrated. We evaluated our work through simulations and results show that our approach was significantly better compared to other VM allocation and Migration strategies.

Integration Architecture for Virtualized Naval Shipboard Computing Systems

  • Kim, Hongjae;Oh, Sangyoon
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Various computing systems are used in naval ships. Since each system has a single purpose and its applications are tightly coupled with the physical machine, applications cannot share physical resources with each other. It is hard to utilize resources efficiently in conventional naval shipboard computing environment. In this paper, we present an integration architecture for virtualized naval shipboard computing systems based on open architecture. Our proposed architecture integrates individual computing resources into one single integrated hardware pool so that the OS and applications are encapsulated as a VM. We consider the issue of varying needs of all applications in a naval ship that have different purposes, priorities and requirements. We also present parallel VM migration algorithm that improves the process time of resource reallocation of given architecture. The evaluation results with the prototype system show that our algorithm performs better than conventional resource reallocation algorithm in process time.

Heuristic based Energy-aware Resource Allocation by Dynamic Consolidation of Virtual Machines in Cloud Data Center

  • Sabbir Hasan, Md.;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1825-1842
    • /
    • 2013
  • Rapid growth of the IT industry has led to significant energy consumption in the last decade. Data centers swallow an enormous amount of electrical energy and have high operating costs and carbon dioxide excretions. In response to this, the dynamic consolidation of virtual machines (VMs) allows for efficient resource management and reduces power consumption through the live migration of VMs in the hosts. Moreover, each client typically has a service level agreement (SLA), this leads to stipulations in dealing with energy-performance trade-offs, as aggressive consolidation may lead to performance degradation beyond the negotiation. In this paper we propose a heuristic based resource allocation of VM selection and a VM allocation approach that aims to minimize the total energy consumption and operating costs while meeting the client-level SLA. Our experiment results demonstrate significant enhancements in cloud providers' profit and energy savings while improving the SLA at a certain level.

Energy-aware Multi-dimensional Resource Allocation Algorithm in Cloud Data Center

  • Nie, Jiawei;Luo, Juan;Yin, Luxiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4320-4333
    • /
    • 2017
  • Energy-efficient virtual resource allocation algorithm has become a hot research topic in cloud computing. However, most of the existing allocation schemes cannot ensure each type of resource be fully utilized. To solve the problem, this paper proposes a virtual machine (VM) allocation algorithm on the basis of multi-dimensional resource, considering the diversity of user's requests. First, we analyze the usage of each dimension resource of physical machines (PMs) and build a D-dimensional resource state model. Second, we introduce an energy-resource state metric (PAR) and then propose an energy-aware multi-dimensional resource allocation algorithm called MRBEA to allocate resources according to the resource state and energy consumption of PMs. Third, we validate the effectiveness of the proposed algorithm by real-world datasets. Experimental results show that MRBEA has a better performance in terms of energy consumption, SLA violations and the number of VM migrations.