
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, Sep. 2016 4165
Copyright ⓒ2016 KSII

An Anti-Overload Model for OpenStack
Based on an Effective Dynamic Migration

Al-moalmi Ammar1, Juan Luo1*and Zhuo Tang1

1College of Computer Science and Electronic Engineering, Hunan University
 [e-mail:al_moalmi,juanluo,ztang@hnu.edu.cn, juanluo@hnu.edu.cn]

*Corresponding author: Juan Luo

Received January 29, 2016; revised May 25, 2016; revised July 2, 2016; accepted August 4, 2016;
published September 30, 2016

Abstract

As an emerging technology, cloud computing is a revolution in information technology that
attracts significant attention from both public and private sectors. In this paper, we proposed a
dynamic approach for live migration to obviate overloaded machines. This approach is applied
on OpenStack, which rapidly grows in an open source cloud computing platform. We
conducted a cost-aware dynamic live migration for virtual machines (VMs) at an appropriate
time to obviate the violation of service level agreement (SLA) before it happens. We
conducted a preemptive migration to offload physical machine (PM) before the overload
situation depending on the predictive method. We have carried out a distributed model, a
predictive method, and a dynamic threshold policy, which are efficient for the scalable
environment as cloud computing.
Experimental results have indicated that our model succeeded in avoiding the overload at a
suitable time. The simulation results from our solution remarked the very efficient reduction of
VM migrations and SLA violation, which could help cloud providers to deliver a good quality
of service (QoS).

Keywords: Cloud computing, Virtualization, OpenStack, Live migration

This work is partially supported by Program for The National Natural Science Foundation of China
(61370094,61300219).

http://dx.doi.org/10.3837/tiis.2016.09.008 ISSN : 1976-7277

4166 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

1. Introduction

Cloud computing attracts significant attention from public and private sectors, nowadays[1].
Cloud computing providers deliver their services according to several fundamental models
such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). Infrastructure as a Service (IaaS) was the focus of this study.IaaS is a
provision model in which physical resources can be provided to organizations to support
operations, including storage, hardware, servers and networking components.
Thepay-as-you-use model for cloud computing IaaS, which enables a convenient on-demand
provisioning of theelastic computing resource, has attracted a diverse interest from individual
users as well as organizations.Customers can connect their provision resources by different
type of terminal devices. Transmit data depends on the available throughput between
customers and cloud which should be increased for a good response. The traffic load between
the terminal devices and cloud should be offloaded to increase the response time[2, 3].Some
other techniques, as mobile edge computing (MEC), solve the low latency requirements to
overcome the disadvantages of cloud computing. However, the overloaded MEC system needs
to cope with a high traffic which leads to a system failure[4].The power consumption of cloud
computing has increased in recent years, which depends on the resource usage, especially the
CPU consumption. The concern of power consumption motivated a lot of researchers to study
the power consumed by CPU[5], network[6], etc. Whereas other researchers focus on the
consolidation of VM to decrease the number of active PMs to reduce the power consumption,
but most of these researchers did not consider the negative effects on performance to guarantee
a good service to customers. The cloud computing providers introduce the cloud service in two
ways: a) guaranteed service class (reserves the physical resource for VM demand), and b) best
effort class (shares the cloud platform and guarantees the effort)[7]. The cloud providers give
guaranteed service class a high priority by reserving the physical resource for customers'
instance. Even though the performance and delivery of services are guaranteed, more secure,
and has high QoS, this kind of service is expensive. On the other hand, the second option
guarantees the effort in sharing cloud platform among cloud customers. Therefore, this type of
service acquires lower cost than the first one. However, cloud computing in terms of QoS and
SLA still experiences significant challenges concerning the performance, availability, energy
consumption, and economic costs for the cloud operators. Consequently, service providers
need to manage the physical resource tightly to guarantee a provision of high QoS without
SLA violation[8]. In IaaS, the overloaded physical machine or aggressive consolidation of
VMs on the same PMis the cause of SLA violation. Hence, a fit methodology is required by
the cloud providers to manage the resource in a dynamic way as to guarantee QoS for the
customers. Thus, we believe that the most common process which causes an overloaded
machine is an aggressive consolidation which can be avoided by making live migration at a
suitable time, as well as taking into account the cost of migration.

A highly recognized cloud platform among the open source cloud projects for both private
and public clouds is OpenStack which was announced in July of 2010[9]. Currently,
OpenStack project contains several sub-projects, and the core project of OpenStack is Nova,
which provides infrastructure as a service upon demand. The OpenStack Nova project can
launch an instance on the efficient compute node which meets the customer’s requirements by
a part of nova project called Scheduler[10]. Even though OpenStack supports live migration
method, the default actor and the action are for the administrator to intervene manually within
the appropriate time to avoid the overload for any PM in the cloud system. The administrator
can move a VM instance from one computer to another. This feature is useful

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4167

wheneverthecompute noderequires maintenance or load redistribution where many VM
instances are running on a specific PM. However, the importance of taking the decision at a
suitable time which guarantees the SLA and QoS is the necessity for conducting a dynamic
live migration process. The lack of a dynamic way motivates us to search for a suitable method
to monitor, measure, and predict the load; hence, we can make right decisions at a suitable
time to migrate VMs to efficient PMs. This method should be compatible with the requirement
of the resource usage to scale up or down depending on the demand.

To achieve this goal, we have tried to improve the working mechanism of OpenStack by
providing extension into the OpenStack implementation. This extension provides a dynamic
live migration to adjust the VMs on PMs to obviate an overloaded PM. Therefore, we took
various factors into consideration, such as the cost of live migration, time of migration, and
destination of migration.

The solution proposed here was to make a dynamic live migration by distributed algorithms
on the nodes to avoid an overloaded PM at a suitable time. First, it is critically essential to
minimize the downtime during the entire live migration process. Second, we must detect the
proper VMs and destination PM for the migration process because it is crucial to choose light
VMs that comply with migration policies, and the PM which has efficient resource space with
a light load. In order to address these problems properly, we devised the solution based on the
following key considerations:

1. We adopted the architecture of distribution management system, which was essential for
large-scale cloud providers. The importance of scalability of distribution management
system is to enable natural scaling of the system to thousands of compute nodes such a
cloud computing environment.

2. We tried to detect the overload before it happened by using the proper indicator to
predict the overload and compare it with an upper dynamic threshold. For a dynamic
workload environment, it is a good mean to compare the dynamic threshold with it to
detect the overload situation. This way, overload can be avoided before SLA violation
occurred, and achieve a migration before the machine developed an overloaded case.

3. We took into account the performance degradation of migration. The effective live
migration downtime can be minimized by preparing shared storage, and searching for
the lightest VM from the set of VMs that can satisfy the migration policy. If there is
none of VM comply with the policy, a number of VMs are to be migrated on a
continuous fashion to reduce the load. Consequently, we added an efficient algorithm
to pick the best candidate of VMs to be migrated. This approach is the best to reduce
migration downtime and the extra load.

4. To consider an appropriate PM where the VM is to be migrated, we have devised
algorithms to migrate suitable VMs at an appropriate time. Then, another algorithm
submitted the heaviest VM from the migratory list to the carefully chosen PM among
cloud computing PMs.

In Section 2, we reviewed previous works in detecting and avoiding an overload in the cloud
environment. Section 3 presents the distributed model, predictive method, and proposed
algorithms. We described the adjustments to the experimental environment and the results in
section 4. Section 5 presents the discussion and conclusion including the limitation of this
research and discussed our future work.

4168 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

2. Related Work
There have been a number of related works on overload detection and management on cloud
data centers. The data from previous approaches for detecting an overload can be divided into
two categories: periodical adjustment of VM placement (no overload detection), and
threshold-based heuristics.

2.1 Periodical Adjustment
This kind of approaches is based on the idea of redistributing the VMs on PMs at periodic
times. One of the early works, in which dynamic VM redistribution was applied to obviate the
load from an overloaded physical machine was performed as part of a job by Verma et al[11].
Although the designed model for optimizing the placement of VMs by the dynamic way as a
bin-packing problem has taken into account the cost of VMs migration, the authors did not
apply any algorithm for determining when it was necessary to conduct the VM placement
optimization. The proposed model was periodically invoked to adjust the placement of VMs
which requires an additional performance without any condition for optimization operation.

FetahiWuhib[12]implemented a dynamic resource allocation for OpenStack, which was
based on gossip protocol to react between peer servers. The operation was conducted
periodically, and the peer servers were randomly chosen without any condition to exchange
their state (including the list of running VMs and their predictive demands). In addition,
performance degradation of migration operation was not considered.

Zhenget. al[13]tested the efficiency of a reallocation decision by automating the response
time which was specified in the SLAs. With the same approach,Kumar et al[14]proposed a
reallocation of theresource under the condition of violating the SLA of hosted applications.
This approach had required more time for VM reallocation and the time of SLA violation was
increased.

2.2 Threshold-based Heuristics
This kind of approaches isbased on the idea of setting the utilization threshold for PMswhile
keeping the total utilization of CPU below the threshold.

Zhu et al[15]applied a static CPU utilization with 85% threshold like a condition for
determining an overload PM. In a recent work, Gmach et al[16] used both periodic and
reactive threshold to control migration process. In addition, VMware[17]distributed power
management based on the same idea with 81% static threshold. However, static threshold
heuristic is unsuitable for an unknown workload system because it could not be adaptedto a
transient change of workload. As different types of applications are able to share a physical
resource, hence, the system should automatically adjust its behavior that is exhibited by the
application, depending on the workload patterns.

Beloglazov[18] used a static and dynamic heuristic threshold as benchmark algorithm to
determine an aggressive consolidation and energy consumption in his experiment.
Althoughthe author had used a dynamic threshold that is suitable for unknown workload, he
did not use a prediction method to perform a migration process at a suitable time to decrease
the effect of migration on the PMperformance.

Maury and Sinh[19]used the adaptive dynamic threshold depending on the utilization of
multi-resources such as CPU,RAM, and network bandwidth to determine when to invoke the
migration to redistribute VMs among the PM. However, the only dynamicthreshold was not
enough to avoid the overload before it happened within an unknown workload. Wang et
al[20]managed resource allocation under the response time of QoS conditions at the cluster

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4169

and the server level by applied control loops. All these works were based on instantaneous
values of system performance and did not use the observed history of system state to predict
the system behavior in the future to avoid overload case.

Xu[21]used a prediction method and set an upper and lower threshold for each kind of
resources, in order to determine the need for a migration. On the contrary, this threshold made
a migration process for any transient fluctuation and did not react for a dynamic workload.
Guenter et al[22]applied a weighted linear regression to predict the future workload and
optimized the resource allocation proactively to implement an energy-aware dynamic VM
consolidation system. Beloglazov[18], used the same algorithm to predict the future workload
and adopted this algorithm to make a dynamic threshold, among other methods he had used for
the dynamic threshold.

Han[23]proposed a remaining utilization-aware (RUA) algorithm for VM placement. In this
work, the algorithm detected the overloaded PM and then conducted a migration for some
VMs. However, the authorshave useda constant threshold to determine the overload situation
and did not use any predictive way to make preemptive migration toward reducing the time
where the PM is located under the impact of the overloaded situation.Nathuji and
Schwan[24]proposed a management system for virtualized data centers where resource
management was divided into local and global policies. On the local level, the system was
responsible for applying the power management strategies for a guest operating system.
Consolidation of VMs was handled by global policies applying live migration to reallocate
VMs. However, the global policies were not discussed in detail in term of considering QoS
requirements. In addition, our work had focused on local policies to predict and consider when
we can achieve a live migration to minimize the SLA violation.

In contrast to the aforementioned studies and based on the best of our knowledge, there has
not been a study on a comprehensive solution that combines a prediction method and a
dynamic threshold to optimize the VMs allocation on PMs. The algorithms regulated the
actions according to the experimental performance characteristics of VMs. Hence, we
proposed a strategy based on an adaptive threshold while predicting the load. The prediction
method estimates the overload before it happened based on a single exponential smooth
(SES)[25]. Furthermore, we conducted aware live migration prior to an overload PM to
prevent performance degradation and SLA violation. The list of migratory VMs was carefully
chosen to minimize the downtime of migration. Furthermore, the idea of estimating the
least-affected PMs for reallocating the migratory VMs before the live migration process took
place, helped to make an aware live migration.

The comprehensive method has been applied in a real environment for the most popular
cloud computing software known as OpenStack. Apparently, this approach has advocated
effectively in obviating the overload and preventing SLA violation.

3. System Model
3. 1 Deployment Distributed Model

The target is an IaaS environment, and the system model consists of some parts which are
distributed on the equipment such as controllers and compute nodes. End-users submit the
requests of provisioning VMs that are categorized according to the requirements of a CPU
performance like MIPS (Million Instruction per second), RAM, memory, and network
bandwidth. The proposed model for the cloud OpenStack software that comprises three main
components is:

4170 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

3.1.1 Global Manager (Controller)

The deployed components on the controller are responsible for making the global management
decision, such as remapping VM instances to PMs. The controller receives a list of migration
requests from local manager then initiates the VMs migration process to enhance the VM
placement.

3.1.2 Local Manager (Compute Node)

The local manager, which is deployed on compute nodes, is a part of VM monitor which is
responsible for monitoring the PM load continuously and deciding which VM should be
migrated from the PM and when to migrate it.

3.1.3 VMM (Virtual Machine Monitor)

The deployed components on every compute node are responsible for data collection on used
resources by the VM instance, then storing those data locally, which are employed by the local
manager algorithms.

3.1.4 Shared Storage

The compute node servers do not have a direct-attached storage while the storage is provided
by the technique of shared storage such as a Network Attached Storage (NAS), Storage Area
Network (SAN), or other available technology to enable live VM migration.

Fig. 1 depicts the distributed system model that is deployed in OpenStack to avoid an
overload PM by live migration at a suitable time.

Fig. 1. Distributed System Model

We split the problem into three sub-problems as PM overload detection, VM selection, and
VM placement. The distribution model and problem segmentation are suitable for expanded
environment such as cloud computing. The local manager that is running on an overloaded PM
invokes the VM selection algorithm to pick the suitable VM which generates the offload, then
sends the migration list to the global manager to carry out the migration operation before the
PMbecame overloaded. This method is helpful for on-time overload prevention to retain
sufficient time to carry out the migration process. This operation will try to keep the total load

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4171

under the threshold, and then the global manager initiates the migration process by invoking
the placement algorithm to find a suitable PM to migrate the VM. Moreover, we have tried to
ensure that the migration performs only for the necessity of alleviating the overload. After that,
the local manager sends the migration request to Nova API to achieve a VM movement
depending on the migration map. In this model, we have illustrated the following topics in
theory.
 Cost of VM Live Migration

Live migration operation transfers VMs between the hypervisors on PMs without
suspension or long downtime. This process depends on the total amount of memory
provided to VM during running time and the available network bandwidth between the
source and destination in the shared storage environment. However, conducting a live
migration process increases the performance of source node and impacts on the
performance of VM and applications running on it during a migration. Therefore, the
performance degradation and downtime depend on the behavior of VM applications such
as how many memory pages the application to be updated during its execution phase. This
was investigated by Voorsluys et al [26], who studied the value of this impact and found a
way to model it. Consequently, we calculate the migration time and the performance
degradation during the migration operation for jVM as shown:

()∫

+

×==
jvmMTt

t
dtt

jvmu
jvmPD

jvmBandwith

jvmMemory

jvmMT
0

0
,1.0, (1)

where
jvmMT is the migration time of jvm ,

jvmMemmory is the amount of memory used by

jvm , and
jvmBandwith is the available network bandwidth for migration.

jvmPD is the

performance degradation by jVM , 0t is the starting time for migration,
jvmu is the CPU

utilization by jVM .

 Service Level Agreement Violation
SLA between a cloud provider and their customers is vital for cloud computing
environments. Therefore, cloud providers have to tackle the QoS requirements with
minimized energy consumption. The SLA violation occurs due to the overload situation or
aggressive VM consolidation. SLA is defined as a provision of 100% of the performance
for application inside the VM at any time. Beloglazov[18]introduced two metrics for
measuring the level of SLA violations in an IaaS environment. The first measurement
calculates the fraction of time for SLA violation, known as Overload Time Fraction (OTF)
during the active PMs time, which was experienced by a 100% CPU workload utilization.
The second metric calculates the overall performance degradation due to VMs migration,
the Performance Degradation Migration (PDM):

 ,
T
T

N
OTF

N

i hostActive

CPUfull

i

i∑
=

=

1

1 (2)

 ∑
=

=
M

j j

j ,
VCPU
EPD

M
PDM

1

1 (3)

Where N is the number of PMs, M is the number of migratory VMs, cpufullT is the total

4172 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

time of the PM i has experienced 100% utilization. hostActiveT is the total time of the PM i .
EPD is the estimate performance degradation of the jVM . VCPU is the total CPU
utilization requested by the jVM . Both OTF and PDM metrics are independent.
In our experiment, we defined the fraction of time for SLA violation as the duration of
active PMs time which experiences CPU utilization workload greater than the adaptive
threshold.

 ,PDMOTFSLAVtotal ×= (4)
 Monitoring Historical Data

The system must continuously monitor the resource utilization and dynamically
redistribute the VMs between the active hypervisors to satisfy the VMs requirements such
as CPU, memory, and network bandwidth. Monitoring the CPU utilization and estimating
the overload before it happens is helpful to achieve the migration process. Theprediction
gives us a significant gain in time to minimize the impact of the migration process. In other
words, the PM load and the migration load preferred to not exceed the overload threshold.
There are various ways to calculate CPU load and VMs load. The modern server CPU
consists of a multi-core CPU with ncores and each has f frequency as a single-core CPU
with the total capacity of nf. The VMs and applications are not to be assigned to a specific
core but is assigned to an arbitrary core by a time-shared scheduling algorithm. Therefore,
the only limitation is that VM must be less or equal to the capacity of a single core. The
CPU utilization for the PM is calculated as the summation of the fraction provided to VMs
running on that CPU. As shown,

,
1
∑
=

=
n

i
iiufnfU (5)

wherethenis the number of the core on multi-core CPU, each having a frequency f
ismodeled as a single core CPU with nf frequency, fiis the fraction frequency submit for
VM, and uiis the CPU utilization specific for VM. The server utilization is obtained
through an operating system interface (/proc) and VM utilization can be obtained through
thelibvirt library. The output of this monitoring method is stored and consumed by the
algorithms.

3. 2 Proposed Structure and Algorithms

We need an algorithm to predict the load of the PM before an overload occurred. Furthermore,
the migration process should be invoked to mitigate the VMs based on the threshold policy.
This threshold policy is vital to prevent the violation of SLA that helps to ensure a good QoS to
the customers who are sharing physical resources on PMs. Consequently, when an overload is
detected, it is obviated by VM migrations which can make the load below the static or dynamic
threshold. In order to address this problem properly, we have devised a solution based on the
following key considerations:
 Measuring historical data and forecasting the future load: we have tried to detect an

overloaded machine before it happened by using a good indicator to predict the
overload and compared it with the dynamic threshold. If in case the migration
increased the load for PM source, then this load is not likely to pass the threshold. The
good effect is the avoidance of overload prior to SLA violation.

 Effective live migration: we have tried to minimize the downtime of VM by preparing
shared storage and choosing the best fit lightweight VM to be migrated from the VMs

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4173

which can relax the load under the threshold. In the case of none of VM can calm
down the load under the threshold, a number of VMs would be migrated on a
continuous fashion to reduce the load. Therefore, the algorithm has to pick the one
with light consuming of CPU, which can relax the load, as the best candidate to be
migrated.

 Remapping VMs to PMs: Once the appropriate list of the migratory VMs has been
chosen, it is necessary to consider the right target onto which the migration is going to
take place. Here, the main concern is to make the best list of VMs to be migrated, and
then choose the efficient destination machine with the least possible operational cost.
Therefore, we estimated the load of targeted machine after adding the load of
migratory VM to all PMs, then choose the PM of minimal impact before the actual
migration is conducted.The reason is to implement an avoiding overload PM for the
OpenStack cloud software and achieve dynamic migration, instead of the manual
migration which is currently achieved by the administrator, the steps and algorithm
were arranged this way. The Fig. 2 explains the component interaction to achieve
dynamic live migration on OpenStack.



Fig. 2. Interaction of achieving dynamic Live migration

3.2.1 Overload Prediction and Detection Algorithm (OPDA)
This algorithm is distributed on all compute nodes to check if there is an overload situation.
The algorithm uses the dynamic adaptive threshold policy. The range of threshold is restricted
to be below upper utilization value for PMs. The total utilization of CPU should not exceed
this threshold. Under normal circumstances, it is possible for CPU utilization to exceed the
limit we have set earlier. When such situation occurred, the system would maintain the limit
for the threshold to reduce the overload by migrating some VMs from the PM. In addition, to
avoid an overload condition, migration of VMs also relieves the PM from having performance
degradation which causes SLA violation, in order to increase QoS for end users. The good side
of this algorithm is that the overloaded situation is detected and obviated before it has actually
occurred. There are three key tasks to be accomplished to decide which VM to be migrated and
when to migrate them. Accurate prediction of performance is acquired to see if an overload

4174 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

situation would be expected and work towards eliminating the overload before it happened.
We have employed dynamic upper threshold policy to assess the performance of PMs. After
getting the predicted utilization, we compared it with the threshold policy to see if it or the real
load exceeds the threshold policy. The complete procedure of OPDA is presented inAlgorithm
1.In the following section, we have presented a discussion on the keys of computing activities
for predicting, adaptive dynamic threshold and then making a comparison.

Algorithm 1: OPDA
1 Input:α , UPL , LPL
2 Output: migration list
3 Foreach host in hostlistdo {
4 Read resource usage data.
5 Predict the next CPU utilization load for thehost.
6 Calculate the threshold policy.
7 if predictive value ≥ threshold policy OR real value ≥ threshold policy then {
8 Select VMs for migration.
9 Send the migrated list request to the controller.
10 If controller confirms the migration then {
11 Remove the migrated VMs from VMs list
12 calculate the new utilization load of host}}
13 Continue monitoring.

• Predicting:We have used a time series data model called SES to make a prediction. SES

is a good forecast technique for generating a periodical list of observation values which are
collected chronologically for monitoring the resource utilization. However, the previous
observations in SES were measured equally, and exponential averaging (smoothing)
assigned weights that decreased exponentially over time. In other words, SES is a kind of
a weighted moving average sequence data process method to forecast whether the PM
would be overloaded or not. The sequence of observation started from time zero and end at
time t, where t is the time for the final observation value. The expression for SES is given
by formula (6):

),(1 tttt SxSS −+=+ α (6)
 where 1+tS is the prediction value at time t+1, tS is the prediction value at time t, tx
is the real value at time t,α is the smoothing factor, and 0 <α < 1. Formula (6) can be
further reduced and expressed as in formula (7) below:

 .)1(1 ttt sxS αα −+×=+ (7)
If we notice carefully, the above equation is a kind of recursion equation, which can be
expanded to formula (8) as follows:

1

1

0
1)1()1(SxS t

t

i
it

i
t ααα −+−=∑

−

=
−+ (8)

As we can see from the formula (8),the exponential smoothing predictive value is a
weighted sum of all the previous real observational values. This means SES uses all the
historical data, so it has more stability and uniformity. The value of indicates the
degree of smoothing and how responsive the model is to frequent changes in the time
series data. There are two factors that determine the arbitrary value of , which are the
characteristics of the data and condition that suit the prediction as to what gives rise to
good response rate.If the observation values have stable rates, the smooth value is a

α
α

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4175

constant value close to zero, but if observation values have fluctuated rates, the smooth
value is constantly close to one. In order to increase the weight of chronological data when
the time series remain uniform, we have chosen a small value of . Larger helps to
increase the weight of recently forecasted values when the time series data keeps on
showing clear fluctuation. The selection of this initial smooth value in this method,
defined as , is to be initialized to when the number of data series(k)is more than 15,
which is the experimental value. While, if k is less than 15, we define S1 as the average
value of the data series. As shown in formula (9),

S1=













≥

<∑
=

.15,

15,

1

0

kx

k
k
xk

i

i

 (9)

• An Adaptive Utilization Threshold
Setting a constant value for the resource utilization threshold might be unsuitable for a
computing environment of dynamic workload. Such environment involves different
types of application which share physical resources like cloud computing. To this
effect, the core idea is to auto-adjust the dynamic value of the upper threshold based
on closer examination of previously collected data throughout the lifetime of VMs[27].
These data are mainly based on CPU usage; CPU utilization here is the amount of time
that is used to process the instruction of a program. Based on the utilization threshold
that we have already set, we can determine if the CPU is overloaded or not. The
adaptive threshold called Tupper is computed for each computes machine in the
distributed model as follows,

MtotalMIPSV

stedMIPStotalrequeUvmSum ==∑ (10)

 (11)
[].*)(1 sqrLPLUPLTupper −−= (12)

Where Uvm is the VM utilization, Sum is the summation for all VM utilization,sqr
is the square root of the sum of squares of all the VMs utilization.UPLrefers to upper
probability limit, and LPL is the lower probability limit for each PM, where we
preserve the amount of CPU capacity by UPL and LPL probability limits. This
method will help us to adjust the dynamic threshold to keep the PM without an
overloaded situation.The PM was judged, whether overloaded or not depending on the
comparison between the upper threshold and the predictive value. Therefore, we have
to migrate some of its VMs to avoid the overload. This is explained by the
mathematical expression below:









→

→≥≥
=

+

.

1

normalotherwize

overloadTupperhutilorTupperS
PM

t

 (13)

Where hutil is the real host utilization. 1+tS is the prediction value at time t+1.The

α α

1S 1x

∑= 2Uvmsqr

4176 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

comparison with real host utilization was conducted to take the probable miss of the
prediction approach.

3.2.2 Selection of VM for Migration

We are now able to identify the overloaded PM, and later we need to make a careful selection
for the list of migratory VMs. This selection has a direct impact on the source of the
overloaded machine and the target machine to which the chosen VM is going to be migrated.
Therefore, choosing the appropriate VM is a key task to be handled before the actual migration
takes place, and hence to reduce the downtime of migratory VM. The migration time is
described as the least possible time required to complete the migration process for aparticular
VM. This time is predicted as the quotient of the size of RAM that had been utilized by VM,
and the free bandwidth that is available for the migration process. Therefore, we will look for
the lightest VM from the set of VMs that can satisfy the condition of relaxing the load under
the threshold policy (if the VM utilization is greater than the difference of current PM
utilization, or the predictive utilization, and upper threshold value). If none of VM complies
with this condition, we have to migrate more than one VM to take the load under the overload
threshold. This way minimizes the migration time and performance degradation which has a
good impact on source PM and a good reduction of delay on the user side. Furthermore, this
way facilitates the reallocation the migratory VMs to active PMs. On the contrary, choosing
the heavy VMs would increase the performance degradation.It is worthy to mention that we
would not conduct a block live migration, which costs a high performance, wastes the system
resources, and makes a long suspension at the user’s side. We have adopted the
shared-storage-based live migration. In this case, all hypervisors have to access shared storage,
which obviates the need to migrate disk storage. OpenStack can support a shared technique
like an OpenStack Gluster connector and a distributed replication storage using GlusterFS.
The OpenStack system copies the base image from the image store to a local disk (in directory
/var/lib/nova/instances) which is used as the first disk of the instance (vda). This directory
would be stored in the shared storage to support a live migration. Therefore, we do not need to
migrate the block storage.

The algorithm starts to look for VMs that have the least amount of CPU consumption,
among those who satisfy the relaxation condition, to reduce the performance degradation. The
algorithm tries to choose the quick-migrating VMs among those that would give good
relaxation to an overloaded PM as well as minimizing the number of the migratory VMs. In
the case of none of this option, a number of VMs have to be migrated as much as possible until
the situation is mitigated and the CPU utilization is lower than the threshold. In this case, the
algorithm would select the VM, removes it from the list of VMs, and proceeds to a new
iteration. The new iteration would take again one of the previous two cases (there are a set of
VMs satisfy the condition, or there are none of theVM satisfy the condition). The pseudo-code
for the algorithm is presented in Algorithm 2. The complexity of the algorithm depends on the
number of VMs allocated to this PM. By the same way of comparing a predictive load withan
upper threshold, we have compared between the current utilization and the threshold policy in
case the real utilization exceeded the threshold policy as an unexpected case. We do not
provide the pseudo-code for this case, as it is similar to the algorithm 2 presented earlier.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4177

Algorithm 2: PickLightestfitVMs
1 Input: VMList, predictivevalue, realutilization,Tupper
2 Output: MigrationList
3 VMList. sortDescendingUtilization()
4 valuepredictivepredict ←
5 max←lbestfituti
6 While Tupperpredict ≥ do {
7 foreachvm in VMList do {
8 if vm.getUtil() > predict - Tupper then {/* the VMutil mustbe higher than the

difference between the predict and the Tupper.*/

9 Tupper +predict - l() vm.getUtit ←
10 if t < lbestfituti then /* = Max it the beginning
11 t←lbestfituti {
12 }}bestfitvm { vm←
13 Else {
14 if lbestfituti = max then
15 vmbestfitvm ←
16 break }}
17
18 migrationList.add(bestfitvm)
19 VMList.remove(bestfitvm) }
20 Return MigrationList

3.2.3 Placement Algorithm
The request of migration from local nodes, which has a list of requirements, is received by the
controller. In return, to get the efficient computing nodes for hosting VMs, this algorithm
employs an OpenStack Nova-scheduler which performs the entire placement process in two
main phases: filtering and weighting[10]. The scheduler returns the sufficient computing
nodes on which the VMs would run. Hence, the algorithm would estimate the load of adding
migratory VMs to all PMs before the migration, and then pick the least impact PM to produce
an efficient map between the migratory VMs and PMs.We used Best Fit Decreasing (BFD)[28]
algorithm with an additional condition to reach this goal. The algorithm would produce a
mapping list of heavy migratory VMs to the lightest PMs Load. The appropriate list was
submitted to the OpenStack Nova-API to perform the migration process between source
machine and destination machine. Then, global manager monitors the VMs migration to
determine when the migration is completed during the movement of the migratory VMs
memory page between source and destination with nearly zero downtime. The following
algorithm explains the way of picking the light load PMs for the heavy load VMs.The
pseudo-code for the algorithm is presented in Algorithm 3. The complexity of the algorithm is
proportional to the product of the number of migrated VMs and the number of the sufficient
PMs.

().getUtilbestfitvmpredictpredict −←

4178 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

Algorithm 3: PickLightLoadPM
1 Input: sufficientListHost, VMLlist
2 Output: MapList
3 VMList.sortDecreasingUtilization()
4 foreach vm in VMList do {
5 sufficientListHost.sortincreasingUtilization()
6 minload Max
7 allocatedHost Null
8 foreachhost in sufficienthostList do {
9 load current load of host + load of vm
10 if load < minload then {
11 allocatedHost host
12 minload load }}
13 if allocatedHost ≠ Null then {
14 MapList .add (vm,allocatedHost)
15 allocatedHostload= minload.
16 VMList.remove (vm) } }
17 Return MapList.

4. Experiment and Results
4.1 Experimental Setup

Table 1. Experiment hosts specification

Host Details
CPU processor 4122, 2 CPU (4 cores) 2.2GHz
RAM 8GB DDR3

Hard Disk 500 GB * 2
NIC 1 G

The testbed,that is used for performance evaluation of the system, consisted of the hardware
specifications as shown inTable 1.First,we installed LinuxCentOS 6operating system on all
PMs. The Centos installation followed the standard process described in detail in the Red Hat
Enterprise Linux 6 installation guide[29]. In this experiment, we adopted the shared storage to
implement live migration. Therefore, it was necessary to use one of the shared storage
techniques such as GlusterFS[30].Second, we deployed the OpenStack component on a
distributed model. In this step, we used the Essex version of OpenStack and followed the
documentation deploying OpenStack on CentOS using the KVM hypervisor and GlusterFS
distributed file system[31].Fig. 3 shows the current integration of OpenStack and
GlusterFS.Finally, we deployed the OpenStack Neat project [32]. The purpose of the
OpenStack Neat framework is to provide an extensible software framework to conduct
research. The following part explains the deployment steps on one controller node and three
compute nodes:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4179

Fig. 3. OpenStack and GlusterFS - Current Integration

• Controller Node:Controller node represents the global state and interacts with all

other components. An API Server acts as the web services front end for the compute
nodes. In this node, we deployed the basic component as Nova-API, Nova-scheduler,
Nova-network, Nova-volume, Nova-objectstore, Keystone service, Glance service,
MySQL server, AMQP message broker, VNC server, and others. We have to mention
that the controller node runs all service except for Nova-compute. Therefore,
controller node does not host any VMs. Then, we added the additional component,
that is responsible for making VM placement decision and initiating a VM migration.
The global manager would call the VM placement algorithm for the requested list of
migratory VMs. Hence, the algorithm produces an appropriate map between the VM
and the PM. After that, the result's map would be sent to the OpenStack Nova-API to
perform the migration. The global manager exposes a REST web service (REST-API)
for processing VM migration requests that have been sent by local managers. The
service Uniform Resource Locator (URL) defines according to the configuration
options specified in /etc/neat/neat.conf.

• Compute nodes:Compute nodes are responsible for running the customers'
instances and providing the physical requirements. We have installed the
Nova-compute, Nova-network, and Nova-API packages in these nodes. We had
chosen a GlusterFS technique rather than other shared storage technique due to its
advantages such as no single point of failure. If a data replica is available on the PM,
VM instances access the data locally rather than remotely over a network improving
the I/O performance. During the installation of the operating system, we have
specified a distinctive volume group which contains a single lv_gluster partition. In
this partition, we stored the directories (/var/lib/nova/instances).These directories
must be mounted and shared between the controller and all the compute nodes to
enable live migration of VMs. The additional components in the proposed distribution
system of compute nodes are responsible for making the local decision by executing
periodically a function to determine whether it is necessary to reallocate VMs of the
PMs to avoid overloaded machines. We deployed a monitoring service, an overload

4180 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

prediction, a detection and selection VM algorithm which have specified the
configuration file for the OpenStack. During the experiment, the configuration
parameters are modified to be favorable for the algorithms. Table 2 exposes the way
of setting of important parameters for algorithms.

•
Table 2. Configuration parameters of algorithms for OpenStack

Configuration option Description
algorithm_overload_detection_param
eters= {"omega": 0.8, "UPL": 0.90,
"LPL": 0.85 }

JSON encoded parameters to be parsed and
passed to the specified overload Prediction and
detection algorithm factory.

algorithm_vm_selection_factory=neat.
locals. PickLightestfitVMs_factory.

The fully qualified name of a Python factory
function that returns a function implementing a
VM selection algorithm

algorithm_vm_placement_factory=nea
t.globals.PickLightLoadPM_factory

The fully qualified name of a Python factory
function that returns a function implementing a
VM placement algorithm.

• Load Generation:Once the installation has been completed, it is crucial to generating the

workload in a reliable way to make a renewable experiment which would guarantee
repeatable experiments as we need. To reproduce a realistic data, we need to use the
workload traces collected from a real system which is better than the artificially generated
data. The monitoring data of PlanetLab infrastructure[33]was provided as a part of the
CoMon project. This data included a workload trace on the CPU utilization which had
been collected every 5 minutes from more than a thousand of VMs which had been
deployed on servers located in more than 500 places around the world. The set of selected
trace and filtering script are available online[34]. After all, VMs had been launched on the
compute nodes, and we have assigned a unique workload trace to each VMs. Look busy
software[35] is a simple application for generating a load on a Linux system that was
developed by Devin Carraway under the GPL license.The tool accepts the set of selective
workload trace values which derive from PlantLab infrastructure as an optional value of
CPU utilization. These selective values contain the level of CPU utilization numbered in
the range [0,100] representing percentages. Lookbusy goes through the sequence of CPU
utilization levels and generates each CPU utilization level for the specified time interval.

•
4.2 Results and analysis

We have conducted the experiment to evaluate the proposed algorithms by allocating as many
VMs on compute nodes as possible to lead the compute nodes to an overloaded situation. We
used a VM instance type with the minimum amount of RAM sufficient for Ubuntu 12.04. The
minimum required amount of RAM was determined to be 128 MB.We have allocated 40 VMs
on compute node1, 20 VMs on compute node2, and 10 VMs on compute node3. Forty CPU
utilization traces had been randomly selected to generate the load on compute node1. During
the experiment, the overload prediction and detection algorithm have been run three times to
handle the variable random factors for the prediction algorithm such as the degree of
smoothing, and the upper and lower limitation for an adaptive threshold. We have calculated
the average of the predictive value when α(0.8,0.5,0.3). The real CPU utilization values and
predicting values are shown in Fig. 4. The Mean Relative Error (MRE) was, correspondingly,
1.3%, 1.9%, and 3.7%. That remarks that SES algorithm has an acceptable predicting accuracy.
The use of α =0.8 has produced a good experimental outcome which was associated with the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4181

best predictive value that determines the future load. The predictive value gave a convenient
time to achieve a preemptive migration before the occurrence of the real overload. The
compute node had used the prediction model to invoke the selection algorithm when the PM
was expected as an overload. Then, the compute node sent a request for migration to the
controller, and the migratory requests that were processed by the controllertook on
averageroughly between 17 and 37 seconds, which was mostly determined from the time taken
to the end of migration.

Fig. 4. Real and Predictive Value

According to the data that was stored by the data collector during the experiment, we evaluated
the SLA violation by calculating the OTF and PMD metrics. The overload time fraction was
calculated when PMshave experienced an overload time according to the overload threshold.
Compute node1 was activated to serve the VMs 24 hours. Depending on the calculated
maximum time to process the migration request, the obtained values of OTF and PDM were
(410421 −×. ,0.1) respectively, and the SLA violation was 410091 −×. .Therefore, we succeeded in
the elimination of an overload situation. The algorithms were able to adequately reduce SLA
violation while moving VMs which have taken the load under the specified threshold. Fig.
5exhibits the real load (before, during, and after migration), and the predictive load. the peak
of real load curve shows the real load during the migration process which did not exceed the
upper threshold. The result reflected the efficiency of the algorithms that performed the live
migration, depending on the prediction technique at a suitable time. Time saved, between the
real load and predictive load, has been used to achieve a preemptive live migration before the
overloaded case, and keep the load under the threshold even with migration load.
Consequently, the obtained results imply a good effect on managing the resources which
guarantee good QoS to customers.

We succeeded in the implementation of the proposed algorithms on OpenStack platform to
achieve the goals. However, it is extremely difficult to conduct repeatable large-scale
experiments on a real infrastructure which is required to cover the evaluation of all aspects of
the proposed algorithms by comparing it with other algorithms. Therefore, to ensure the
repeatability of experiments, simulations were chosen as a way to evaluate the performance of
the proposed algorithms.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 Re
al

 a
nd

 p
re

di
ct

iv
e

va
lu

e
of

CP

U
 u

til
iz

at
io

n
us

ag
e

(%
)

Time (minute)
α =0.3 α =0.5 α =0.8 Real

4182 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

Fig. 5. Load during Live Migration

We chose the CloudSim toolkit[36]as a simulation platform. In this experiment, we had

worked with one data center comprising 100 PMs. Each node was formed to have one CPU
core with the performance equivalent to 800, 1200, 2000 MIPS, 8 G of RAM. Then, we
submitted 300 VMs on the simulated datacenter. Each VM required one CPU core with 250,
500, 750 and 1000 MIPS respectively, with 128 MB of RAM. We have conducted several
experiments to evaluate the model that was used in this work and set the simulation limit to 24
hours. Comparisons on the prediction model were made with other classic prediction methods
such as Autoregressive (AR), Moving Average (MA), Autoregressive Integrated Moving
Average (ARIMA) and Back Propagation (BP) neural network. The prediction time interval
was set to 300s and then we repeated the same experiment with 600s to make the
comparison.Fig. 6 shows the experiment results.We can conclude that the prediction time
interval has an influence on the predictive value. Consequently, we choose SES because it is
not too sensitive for interval time, and it is a relatively simple model giving a persuasive
performance. The MRE of SES is acceptable as compared to the other models, like MA that
works well with small interval and ARIMA which works well with a long interval. The
threshold policy was evaluated subsequently with different values of the probability of upper
and lower limitation to determine the best interval values of threshold in QoS presented by
SLA violation. The simulation results have been presented in Fig 7. The result shows that with
the growth of the threshold, the percentage of SLA violation increases. This is due to the fact
that high utilization threshold allows more aggressive consolidation of VMs which increased
the risk of SLA violation. We have repeated the same experiment with the prediction model
and compared it with the previous result. The result shows that the prediction model can
potentially reduce the SLA violation for all threshold intervals at an average rate of 32.5%.
This is associated with the time convenience offered in the prediction model prior to the time
that the system actually gets an overloaded machine. This time was exploited for migration
and decreased the violation time. We have also investigated the number of migratory VMs
with different threshold policies, and the results are illustrated in Fig. 8.

In this figure, we can observe that the algorithms succeed in minimizing the number of
migratory VMs by picking appropriate VM for migration. Moreover, when the threshold is
increased, the number of migratory VMs is decreased. On the other hand, we repeated the
same experiment with a PickLightloadPM algorithm that remapped heavy migratory load

75

77

79

81

83

85

87

89

30 35 40 45 50 55 60

Predictive Load Real load Tupper

load during migration

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4183

VMs to light loadPMs. The results exhibited that the number of migrated VMs with
PickLightloadPM algorithm was less than the number of VMs that migrated without it by an
average 15.12% for all intervals.

That is due to the algorithm estimation for the load before the migration started, which
causes a new overload on other PMs. In addition, the algorithm has produced an efficient
mapping between the heavy VMs and light load PMs. When we jointly consider the previous
results together, we have chosen the threshold policy 85-90% which has an acceptable value of
SLA violation (4.1×10-5). Furthermore, it hadan acceptance of provision resources and
reduced the number of VM migration. Therefore, we have regarded the 85-90% threshold
interval as a possible appropriate for later experiments. We moved further on evaluating the
overload prediction and detection algorithms and compared it with other methods. We have
chosen the probability interval 85-90% to conduct this comparison with experimental
benchmarks.We have used the NonPower-Aware (NPA) policy and DVFS for the benchmark
experimental results. These policies do not apply any optimizations or adaptation of the VM
allocation at run-time and imply that all hosts run at 100% CPU utilization. Moreover, we also
compared our work with ST (static threshold) and RUA. The mainresults are presented in
Fig. 9, and Fig. 10,which show the effective reduction of SLA violation and number of
migratory VM.From the presented results the OPDA algorithm brought down SLA violation
to the minimum comparing to other algorithms specially RUA, that’s because OPDA made
preemptive migration which minimized the overloaded time hence reduced the SLA violation.
Furthermore, the RUA resulted in a smaller number of migratory VMs due to the prediction
method of OPDA not always producing the accurate result for next interval workload which
sometimes causes unnecessary preemptive migration. However, thepriority of conducting a
preemptive migration has a significant impact in reducing SLA violation and provides a high
quality of service.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

70-75% 75-80% 80-85% 85-90% 90-95%

SL
AV

(×
10

-5
)

Threshold policy

SLA Violation
without prediction with prediction

0%

5%

10%

15%

20%

25%

AR MA ARIMA BP SES

M
ea

n
Re

la
tiv

e
Er

ro
r (

%
) 300s

600s

Fig. 6. Relative Error of Various Predicting
Models

Fig. 7. SLA violation of different probability
of threshold interval.

4184 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

Fig. 9. SLA violation with other policies

5. Conclusion
Cloud computing becomes a powerful computing paradigm that enables the computing
services like a software, infrastructure, and platform to be provisioned to users as per their
desire on a pay-as-you-use. OpenStack is one of the robust open source software
infrastructures consisting of several projects in it. However, the implementation of Nova has
an aggressive consolidation ratio, because the scheduler submits VMs to the least PM
capacity.

This study provides an efficient dynamic live migration to optimize the mechanism of
OpenStack. The method of our research has avoided overload effectively and reduce SLA
violation.The forecast method that we used is useful to predict future changes and mitigate to
conserve the system’s stability. Furthermore, precise selection of VM for migration has an
appreciable effect in preserving the resources which were degraded during the migration
process. The prerequisite conditions for selecting the target machine obviate an unnecessary
migration process, where the migration takes place only after it has ensured that the target
machine is an appropriate and lightest node. The results show that our model makes important
minimization for the number of VMs as well as minimizes SLA violation on the system.
Moreover, the experimental results show a significant reduction in the cost of the migration
process.

Taking only one factor that is CPU utilization to calculate adaptive threshold, as well as
overload situation was one of the limitations of this study. However, there were other factors
like bandwidth and RAM which may affect PM load somehow. An application may fail due to

0

5

10

15

20

SL
A

Vi
ol

at
io

n
(×

10
-5

)

0
20
40
60
80

100

70-75% 75-80% 80-85% 85-90% 90-95%

N
um

be
r o

f V
M

 m
ig

ra
tio

n

Threshold policy

without PickLightloadPM with PickLightloadPM

0
50

100
150
200
250

nu
m

be
r o

f V
M

 m
ig

ra
tio

n

Fig. 8. Number of VM Migration With Our Algorithm

Fig. 10. Number of VM migration with other policies

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4185

insufficient RAM whereas insufficient CPU may just slow down the execution of the
application. Moreover, CPU capacity allocated for a VM was fixed to be less or equal to the
capacity of one core and removing this constraint would require the VM to be executed on
more than one core in parallel. On the other hand, in the current implementation, we assumed
only one controller PM which may have limited the scalability and created a single point of
failure. Further research is needed to investigate in details of all these limitations in order to
aim for perfect results.

References
[1] E. Arianyan, H. Taheri, and S. Sharifian, “Novel energy and SLA efficient resource

management heuristics for consolidation of virtual machines in cloud data centers,” Computers
& Electrical Engineering, 2015. Article (CrossRef Link)

[2] M. Jo, T. Maksymyuk, B. Strykhalyuk, and C.-H. Cho, “Device-to-device-based
heterogeneous radio access network architecture for mobile cloud computing,” Wireless
Communications, IEEE, vol. 22, no. 3, pp. 50-58, 2015. Article (CrossRef Link)

[3] Y. W. Ahn, A. M. Cheng, J. Baek, M. Jo, and H.-H. Chen, “An auto-scaling mechanism for
virtual resources to support mobile, pervasive, real-time healthcare applications in cloud
computing,” IEEE Network, vol. 27, no. 5, pp. 62-68, 2013. Article (CrossRef Link)

[4] D. Satria, D. Park, and M. Jo, “Recovery for overloaded mobile edge computing,” Future
Generation Computer Systems, 2016.Article (CrossRef Link)

[5] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing,” Future generation computer
systems, vol. 28, no. 5, pp. 755-768, 2012. Article (CrossRef Link)

[6] J. Luo, J. Hu, D. Wu, and R. Li, “Opportunistic routing algorithm for relay node selection in
wireless sensor networks,” Industrial Informatics, IEEE Transactions on, vol. 11, no. 1, pp.
112-121, 2015. Article (CrossRef Link)

[7] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux, J. Lejeune, J. Sopena, L. Arantes, and P. Sens,
"Towards QoS-Oriented SLA Guarantees for Online Cloud Services," pp. 50-57.
Article (CrossRef Link)

[8] J. A. Wickboldt, R. P. Esteves, M. B. de Carvalho, and L. Z. Granville, “Resource management
in IaaS cloud platforms made flexible through programmability,” Computer Networks, vol. 68,
pp. 54-70, 2014. Article (CrossRef Link)

[9] "OpenStack Open Source Cloud Computing Software," Article (CrossRef Link).
[10] O. Litvinski, and A. Gherbi, “Openstack scheduler evaluation using design of experiment

approach,” in Proc. of 16th IEEE International Symposium on Objec (ISORC 2013), pp. 1-7,
2013. Article (CrossRef Link)

[11] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and Migration Cost Aware Application
Placement in Virtualized Systems,” in Proc. of the 9th ACM/IFIP/USENIX International
Conference on Middleware, pp. 243–264, 2008. Article (CrossRef Link)

[12] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic resource allocation with management
objectives—Implementation for an OpenStack cloud,” in Proc. of Network and service
management (cnsm), international conference and workshop on systems virtualiztion
management (svm), pp. 309-315, 2012.Article (CrossRef Link)

[13] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner, “JustRunIt:
Experiment-Based Management of Virtualized Data Centers,” in Proc. of the 2009 USENIX
Annual Technical Conference, pp. 18–33., 2009.Article (CrossRef Link)

[14] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan, “vManage: Loosely
Coupled Platform and Virtualization Management in Data Centers,” in Proc. of the 6th
International Conference on Autonomic Computing (ICAC), pp. 127–136., 2009.
Article (CrossRef Link)

http://dx.doi.org/doi:10.1016/j.compeleceng.2015.05.006
http://dx.doi.org/doi:10.1109/MWC.2015.7143326
http://dx.doi.org/doi:10.1109/MNET.2013.6616117
http://dx.doi.org/doi:10.1016/j.future.2016.06.024
http://dx.doi.org/doi:10.1016/j.future.2011.04.017
http://dx.doi.org/doi:10.1109/TII.2014.2374071
http://dx.doi.org/doi:10.1109/ccgrid.2013.66
http://dx.doi.org/doi:10.1016/j.comnet.2014.02.018
http://www.openstack.org/
http://dx.doi.org/doi:10.1109/isorc.2013.6913212
http://dx.doi.org/doi:10.1007/978-3-540-89856-6_13
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6380035&tag=1
https://www.usenix.org/legacy/events/usenix09/tech/full_papers/zheng/zheng_html/
http://dx.doi.org/doi:10.1145/1555228.1555262

4186 Al-moalmi et al.: A.An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration.

[15] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser, and D.
Gmach, “1000 Islands: Integrated capacity and workload management for the next generation
data center,” in Proc. of the 5th International Conference on Auto-nomic Computing (ICAC),
pp. 172–181, 2008. Article (CrossRef Link)

[16] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and A. Kemper, “An integrated
approach to resource pool management: Policies, efficiency and qual-ity metrics,” in Proc. of
the 38th IEEE International Conference on Dependable Systems and Networks (DSN), pp.
326–335, 2008. Article (CrossRef Link)

[17] VMware, “VMware distributed power management concepts and use,” 2010.
Article (CrossRef Link)

[18] A. Beloglazov, and R. Buyya, “Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual machines in
cloud data centers,” Concurrency and Computation: Practice and Experience, vol. 24, no. 13,
pp. 1397-1420, 2012. Article (CrossRef Link)

[19] K. Maury, and R. Sinh, “Energy Conscious Dynamic Provisioning of Virtual Machines using
Adaptive Migration Thresholds in Cloud Data Center,” International Journal of Computer
Science and Mobile Computing, vol. IJCSMC, Vol. 2, Issue. 3, March 2013, pg.74 – 82, 2013.
Article (CrossRef Link)

[20] X. Wang, and Y. Wang, “Coordinating Power Control and Performance Management for
Virtualized Server Clusters,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 22, no. 2, pp. 245–259, 2011. Article (CrossRef Link)

[21] L. Xu, W. Chen, Z. Wang, and S. Yang, “Smart-DRS: A strategy of dynamic resource
scheduling in cloud data center,” in Proc. of Cluster Computing Workshops (CLUSTER
WORKSHOPS), 2012 IEEE International Conference on, pp. 120-127, 2012.
Article (CrossRef Link).

[22] B. Guenter, N. Jain, and C. Williams, “Managing Cost, Performance, and Reliability Tradeoffs
for Energy-Aware Server Provisioning,” in Proc. of the 30st Annual IEEE International
Conference on Computer Communications (INFOCOM), pp. 1332–1340., 2011.
Article (CrossRef Link).

[23] G. Han, W. Que, G. Jia, and L. Shu, “An Efficient Virtual Machine Consolidation Scheme for
Multimedia Cloud Computing,” Sensors, vol. 16, no. 2, pp. 246, 2016. Article (CrossRef Link)

[24] R. Nathuji, and K. Schwan, “VirtualPower: coordinated power management in virtualized
enterprise systems,” ACM SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 265-278,
2007.Article (CrossRef Link).

[25] S. Makridakis, S. C. Wheelwright, and R. J. Hyndman,Forecasting methods and applications:
John Wiley & Sons, 2008.Article (CrossRef Link).

[26] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of Virtual Machine Live
Migration in Clouds: A Performance Evaluation,” in Proc. of the 1st International Conference
on Cloud Computing (CloudCom 2009), Beijing, China, 2009.Article (CrossRef Link).

[27] R. Sinha, N. Purohit, and H. Diwanji, “Power aware live migration for data centers in cloud
using dynamic threshold,” International Journal of Computer Technology and Applications,
vol. 2, no. 6, 2011.Article (CrossRef Link).

[28] Y. MINYI, "A simple proof of the inequality FFD (L)< 11/9 OPT (L)+ 1,for all l for the
FFDbin-packing algorithm," ActaMathematicae Applicatae Sinica (English Series), 1991.
Article (CrossRef Link).

[29] R. Landmann, J. Reed, D. Cantrell, H. D. Goede, and J. Masters, "Red Hat Enterprise Linux 6
Installation Guide," 2012.Article (CrossRef Link).

[30] E. J. Qaisar, “Introduction to Cloud Computing for Developers,” in Proc. of Information
Technology Professional Conference (TCF Pro IT), IEEE TCF 2012, 2012.
Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/icac.2008.32
http://dx.doi.org/doi:10.1109/dsn.2008.4630101
https://www.vmware.com/techpapers/2008/vmware-distributed-power-management-concepts-and-1080.html
http://dx.doi.org/doi:10.1002/cpe.1867
http://www.academia.edu/3167215/Energy_Conscious_Dynamic_Provisioning_of_Virtual_Machines_using_Adaptive_Migration_Thresholds_in_Cloud_Data_Center
http://dx.doi.org/doi:10.1109/tpds.2010.91
http://dx.doi.org/doi:10.1109/clusterw.2012.14
http://dx.doi.org/doi:10.1109/infcom.2011.5934917
http://dx.doi.org/doi:10.3390/s16020246
http://dx.doi.org/doi:10.1145/1323293.1294287
https://hephaestus.nup.ac.cy/handle/11728/6636
http://dx.doi.org/doi:10.1007/978-3-642-10665-1_23
http://www.oalib.com/paper/2652965%23.V6Swkbh95PY
http://dx.doi.org/doi:10.1007/BF02009683
http://www.tecmint.com/red-hat-enterprise-linux-rhel-6-installation-guide-with-screenshots/
http://dx.doi.org/10.1109/TCFProIT.2012.6221131

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4187

[31] S. F. P. Anton Beloglazov, Mohammed Alrokayan, and Rajkumar Buyya, “Deploying
OpenStack on CentOS Using the KVM Hypervisor and GlusterFS Distributed File System,” in
Proc. of Cloud Computing and Distributed Systems (CLOUDS) Laboratory, August 2012.
Article (CrossRef Link).

[32] A. B. R. Buyya, “OpenStack Neat: A Framework for Dynamic Consolidation of Virtual
Machines in OpenStackClouds – A Blueprint,” 2012. Article (CrossRef Link).

[33] K. Park, and V. S. Pai, “CoMon: A Mostly-Scalable Monitoring System for PlanetLab,” in
Proc. of ACM SIGOPS Operating Systems Review, 2006.Article (CrossRef Link).

[34] A. Beloglazov. "The workload data," Article (CrossRef Link).
[35] "lookbusy -- a synthetic load generator," Article (CrossRef Link).
[36] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya, “CloudSim: A

Toolkit for the Modeling and Simulationof Cloud Resource Management and Application
Provisioning Techniques,” Software: Practice and Experience, January 2011.
Article (CrossRef Link).

Al-moalmi Ammar received the Bachelor’s degree in computer science from Sana’a
university, Sana’a, Yemen, in 2005, and Master of engineering degree in Computer
Science and technology, Hunan University, china, in 2014. He worked in Yemen as a
lecturer for a computer science department at Sana’a University. He is a reviewer for
some journals. Currently, he is pursuing the Ph.D. degree at the College of Computer
Science and Electronic Engineering, Hunan University. His research interests include
cloud computing.

Juan Luo received the bachelor’s degree in1997 from National University of Defense
Technology, Hunan, China. Sheachieved master’s and Ph.D. degrees in communication
and informationsystem in 2000 and 2005, respectively, both from Wuhan University,
Hubei,China. She is currently a professor and doctoral supervisor at the College
ofComputer Science and Electronic Engineering, Hunan University, Changsha,Hunan,
China. From 2008 to 2009, she was a visitingscholar at the University of California at
Irvine. She has published more than 60 papers. Her research is focused on wireless
networks, cloud computing,and wireless sensor networks. She is a member of the IEEE
andSIGCOM, a member of theACM, and a senior member of CCF.

Zhuotang received the Ph.D. in computer science from Huazhong University of
Science and Technology, China, in 2008. He is currently an associate professor of the
College of Computer Science and Electronic Engineering at Hunan University, and he is
the associate chair of the department of computing science. His majors are distributed
computing system, cloud computing and the parallel process for big data, include the
security model, parallel algorithms, and resources scheduling and management in these
areas. He is a member of ACM and CCF.

http://www.cloudbus.org/reports/OpenStack-CentOS-KVM-glusterfs-guide-Aug2012.pdf
http://www.cloudbus.org/reports/OpenStack-neat-Blueprint-Aug2012.pdf
http://dx.doi.org/doi:10.1145/1113361.1113374
https://github.com/beloglazov/tpds-2013-workload
http://www.devin.com/lookbusy/
http://dx.doi.org/10.1002/spe.995

